Skip to main content
Erschienen in: Fire Technology 5/2023

01.07.2023

A Planning Model for Predicting Ignition Potential of Complex Fuels in Diurnally Variable Environments

verfasst von: Saurabh Saxena, Ritambhara Raj Dubey, Neda Yaghoobian

Erschienen in: Fire Technology | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fuel ignition potential is one of the primary drivers influencing the extent of damage in wildland and wildland–urban interface fires and it is a decisive factor in planning prescribed fires. Determining the susceptibility of fuels, which vary spatially and temporally, to fire will help to recognize necessary defensive actions, reduce damages, and help to configure prescribed fire plans. In this paper, the development of a new computational model, Complex-environment Temperature and Moisture Predictor (CeTMP), is presented. CeTMP predicts the diurnal temperature and moisture content variations, and thus vulnerability to ignition, of objects/fuels with complex shapes, settings, or topography and materials under variable environmental conditions. The model is applicable to complex scenarios (e.g., interface or intermix communities) composed of natural and manmade random-shaped items in open atmosphere under the influence of local weather and diurnal solar radiation. The vulnerability of fuels to ignition is determined by predicting the transient temperature and dryness of fuel in connection with the surroundings, topography, and local environment, as well as flame heat if any exists. In this regard, a detailed surface energy balance analysis, coupled with a water budget analysis, is performed in high spatiotemporal resolution. The model performance was validated against several existing analytical and measured data. The discrete, high-resolution surface temperature and moisture content information obtained from the model can also provide unsteady boundary conditions for computational fluid dynamics simulations when coupled physics is desired.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Byram GM (1959) Combustion of forest fuels. Forest fire: Control and Use. McGraw-Hill, New York, pp. 61–89 Byram GM (1959) Combustion of forest fuels. Forest fire: Control and Use. McGraw-Hill, New York, pp. 61–89
2.
Zurück zum Zitat Chuvieco E, Aguado I, Dimitrakopoulos A (2004) Conversion of fuel moisture content values to ignition potential for integrated. Can J For Res 34(11):2284–2293CrossRef Chuvieco E, Aguado I, Dimitrakopoulos A (2004) Conversion of fuel moisture content values to ignition potential for integrated. Can J For Res 34(11):2284–2293CrossRef
4.
Zurück zum Zitat Speer K, Goodrick S (eds) (2022) Wildland fire dynamics: fire effects and behavior from a fluid dynamics perspective. Cambridge University Press, Cambridge Speer K, Goodrick S (eds) (2022) Wildland fire dynamics: fire effects and behavior from a fluid dynamics perspective. Cambridge University Press, Cambridge
5.
Zurück zum Zitat Wotton BM, Alexander ME, Taylor SW (2009) Updates and revisions to the 1992 Canadian forest fire behavior prediction system. Great Lakes Forestry Centre, Sault Ste. Marie Wotton BM, Alexander ME, Taylor SW (2009) Updates and revisions to the 1992 Canadian forest fire behavior prediction system. Great Lakes Forestry Centre, Sault Ste. Marie
6.
Zurück zum Zitat Cardille JA, Ventura SJ, Turner MG (2001) Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol Appl 11(1):111–127CrossRef Cardille JA, Ventura SJ, Turner MG (2001) Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol Appl 11(1):111–127CrossRef
7.
Zurück zum Zitat Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For Sci 53(1):1–15 Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For Sci 53(1):1–15
8.
Zurück zum Zitat Blackmarr WH (1972) Moisture content influences ignitability of slash pine litter. Southeastern Forest Experiment Station, US Department of Agriculture, Forest Service, Asheville Blackmarr WH (1972) Moisture content influences ignitability of slash pine litter. Southeastern Forest Experiment Station, US Department of Agriculture, Forest Service, Asheville
9.
Zurück zum Zitat Sullivan AL (2017) Inside the inferno: fundamental processes of wildland fire behaviour: part 2: heat transfer and interactions. Curr For Rep 3:150–171CrossRef Sullivan AL (2017) Inside the inferno: fundamental processes of wildland fire behaviour: part 2: heat transfer and interactions. Curr For Rep 3:150–171CrossRef
10.
Zurück zum Zitat Bakšić N, Bakšić D, Jazbec A (2017) Hourly fine fuel moisture model for Pinus halepensis (Mill.) litter. Agric For Meteorol 243:93–99CrossRef Bakšić N, Bakšić D, Jazbec A (2017) Hourly fine fuel moisture model for Pinus halepensis (Mill.) litter. Agric For Meteorol 243:93–99CrossRef
11.
Zurück zum Zitat Matthews S (2006) A process-based model of fine fuel moisture. Int J Wildland Fire 15(2):155–168CrossRef Matthews S (2006) A process-based model of fine fuel moisture. Int J Wildland Fire 15(2):155–168CrossRef
12.
Zurück zum Zitat Resco de Dios V, Fellows AW, Nolan RH, Boer MM, Bradstock RA, Domingo F, Goulden ML (2015) A semi-mechanistic model for predicting the moisture content of fine litter. Agric For Meteorol 203:64–73CrossRef Resco de Dios V, Fellows AW, Nolan RH, Boer MM, Bradstock RA, Domingo F, Goulden ML (2015) A semi-mechanistic model for predicting the moisture content of fine litter. Agric For Meteorol 203:64–73CrossRef
13.
Zurück zum Zitat Sharples JJ, McRae RH, Weber RO, Gill AM (2009) A simple index for assessing fuel moisture content. Environ Model Softw 24(5):637–646CrossRef Sharples JJ, McRae RH, Weber RO, Gill AM (2009) A simple index for assessing fuel moisture content. Environ Model Softw 24(5):637–646CrossRef
14.
Zurück zum Zitat Slijepcevic A, Anderson WR, Matthews S, Anderson DH (2015) Evaluating models to predict daily fine fuel moisture content in eucalypt forest. For Ecol Manag 335:261–269CrossRef Slijepcevic A, Anderson WR, Matthews S, Anderson DH (2015) Evaluating models to predict daily fine fuel moisture content in eucalypt forest. For Ecol Manag 335:261–269CrossRef
15.
Zurück zum Zitat Van Wagner CE (1987) Development and structure of the Canadian forest fire weather index system. Forestry Technical Report 35. Canadian Forestry Service. Van Wagner CE (1987) Development and structure of the Canadian forest fire weather index system. Forestry Technical Report 35. Canadian Forestry Service.
16.
Zurück zum Zitat Nelson RM Jr (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Can J For Res 30(7):1071–1087CrossRef Nelson RM Jr (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Can J For Res 30(7):1071–1087CrossRef
17.
Zurück zum Zitat Wittich KP (2005) A single-layer litter-moisture model for estimating forest-fire danger. Meteorol Z 14:157–164CrossRef Wittich KP (2005) A single-layer litter-moisture model for estimating forest-fire danger. Meteorol Z 14:157–164CrossRef
18.
Zurück zum Zitat Rothermel RC (1983) How to predict the spread and intensity of forest and range fires, vol 143. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, OgdenCrossRef Rothermel RC (1983) How to predict the spread and intensity of forest and range fires, vol 143. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, OgdenCrossRef
19.
Zurück zum Zitat Matthews S (2013) Dead fuel moisture research: 1991–2012. Int J Wildland Fire 23(1):78–92CrossRef Matthews S (2013) Dead fuel moisture research: 1991–2012. Int J Wildland Fire 23(1):78–92CrossRef
24.
Zurück zum Zitat Jurdao S, Chuvieco E, Arevalillo JM (2012) Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecol 8(1):77–97CrossRef Jurdao S, Chuvieco E, Arevalillo JM (2012) Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecol 8(1):77–97CrossRef
25.
Zurück zum Zitat Arnfield AJ (1990) Canyon geometry, the urban fabric and nocturnal cooling: a simulation approach. Phys Geogr 11(3):220–239CrossRef Arnfield AJ (1990) Canyon geometry, the urban fabric and nocturnal cooling: a simulation approach. Phys Geogr 11(3):220–239CrossRef
26.
Zurück zum Zitat Wu L (1995) An urban canopy layer surface energy balance climate model (Doctoral dissertation, PhD Dissertation, University of California, Los Angeles) Wu L (1995) An urban canopy layer surface energy balance climate model (Doctoral dissertation, PhD Dissertation, University of California, Los Angeles)
27.
Zurück zum Zitat Mills G (1997) An urban canopy-layer climate model. Theor Appl Climatol 57(3):229–244CrossRef Mills G (1997) An urban canopy-layer climate model. Theor Appl Climatol 57(3):229–244CrossRef
28.
Zurück zum Zitat Kanda M, Kawai T, Kanega M, Moriwaki R, Narita K, Hagishima A (2005) A simple energy balance model for regular building arrays. Bound Layer Meteorol 116(3):423–443CrossRef Kanda M, Kawai T, Kanega M, Moriwaki R, Narita K, Hagishima A (2005) A simple energy balance model for regular building arrays. Bound Layer Meteorol 116(3):423–443CrossRef
29.
Zurück zum Zitat Krayenhoff ES, Voogt JA (2007) A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound Layer Meteorol 123(3):433–461CrossRef Krayenhoff ES, Voogt JA (2007) A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound Layer Meteorol 123(3):433–461CrossRef
30.
Zurück zum Zitat Yaghoobian N, Kleissl J (2012) An indoor–outdoor building energy simulator to study urban modification effects on building energy use—model description and validation. Energy Build 54:407–417CrossRef Yaghoobian N, Kleissl J (2012) An indoor–outdoor building energy simulator to study urban modification effects on building energy use—model description and validation. Energy Build 54:407–417CrossRef
31.
Zurück zum Zitat Asawa T, Hoyano A, Nakaohkubo K (2008) Thermal design tool for outdoor spaces based on heat balance simulation using a 3D-CAD system. Build Environ 43(12):2112–2123CrossRef Asawa T, Hoyano A, Nakaohkubo K (2008) Thermal design tool for outdoor spaces based on heat balance simulation using a 3D-CAD system. Build Environ 43(12):2112–2123CrossRef
32.
Zurück zum Zitat Hénon A, Mestayer PG, Lagouarde JP, Voogt JA (2012) An urban neighborhood temperature and energy study from the CAPITOUL experiment with the SOLENE model. Theor Appl Climatol 110(1):177–196CrossRef Hénon A, Mestayer PG, Lagouarde JP, Voogt JA (2012) An urban neighborhood temperature and energy study from the CAPITOUL experiment with the SOLENE model. Theor Appl Climatol 110(1):177–196CrossRef
33.
Zurück zum Zitat Liu J, Luo Z, Zhao T, Shui J (2012) Ventilation in a street canyon under diurnal heating conditions. Int J Vent 11(2):141–154 Liu J, Luo Z, Zhao T, Shui J (2012) Ventilation in a street canyon under diurnal heating conditions. Int J Vent 11(2):141–154
34.
Zurück zum Zitat Yang X, Li Y (2013) Development of a three-dimensional urban energy model for predicting and understanding surface temperature distribution. Bound Layer Meteorol 149(2):303–321CrossRef Yang X, Li Y (2013) Development of a three-dimensional urban energy model for predicting and understanding surface temperature distribution. Bound Layer Meteorol 149(2):303–321CrossRef
35.
Zurück zum Zitat Lee DI, Lee SH (2020) The microscale urban surface energy (MUSE) model for real urban application. Atmosphere 11(12):1347CrossRef Lee DI, Lee SH (2020) The microscale urban surface energy (MUSE) model for real urban application. Atmosphere 11(12):1347CrossRef
36.
Zurück zum Zitat Baek SW, Kim MY, Kim JS (1998) Nonorthogonal finite-volume solutions of radiative heat transfer in a three-dimensional enclosure. Numer Heat Transf B 34(4):419–437CrossRef Baek SW, Kim MY, Kim JS (1998) Nonorthogonal finite-volume solutions of radiative heat transfer in a three-dimensional enclosure. Numer Heat Transf B 34(4):419–437CrossRef
37.
Zurück zum Zitat Byun DY, Baek SW, Kim MY (2003) Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments. Numer Heat Transf A 43(8):807–825CrossRef Byun DY, Baek SW, Kim MY (2003) Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments. Numer Heat Transf A 43(8):807–825CrossRef
38.
Zurück zum Zitat Kim MY, Baek SW, Park JH (2001) Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles. Numer Heat Transf B 39(6):617–635CrossRef Kim MY, Baek SW, Park JH (2001) Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles. Numer Heat Transf B 39(6):617–635CrossRef
39.
Zurück zum Zitat Zabihi M, Lari K, Amiri H (2017) Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method. J Braz Soc Mech Sci Eng 39(7):2847–2864CrossRef Zabihi M, Lari K, Amiri H (2017) Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method. J Braz Soc Mech Sci Eng 39(7):2847–2864CrossRef
42.
Zurück zum Zitat Hoff SJ, Janni KA (1989) Monte Carlo technique for the determination of thermal radiation shape factors. Trans ASAE 32(3):1023–1028CrossRef Hoff SJ, Janni KA (1989) Monte Carlo technique for the determination of thermal radiation shape factors. Trans ASAE 32(3):1023–1028CrossRef
43.
Zurück zum Zitat Howell JR (1998) The Monte Carlo method in radiative heat transfer. ASME J Heat Transfer 120(3):547–560CrossRef Howell JR (1998) The Monte Carlo method in radiative heat transfer. ASME J Heat Transfer 120(3):547–560CrossRef
44.
Zurück zum Zitat Mirhosseini M, Saboonchi A (2011) View factor calculation using the Monte Carlo method for a 3D strip element to circular cylinder. Int Commun Heat Mass Transf 38(6):821–826CrossRef Mirhosseini M, Saboonchi A (2011) View factor calculation using the Monte Carlo method for a 3D strip element to circular cylinder. Int Commun Heat Mass Transf 38(6):821–826CrossRef
45.
Zurück zum Zitat Mazumder S, Ravishankar M (2012) General procedure for calculation of diffuse view factors between arbitrary planar polygons. Int J Heat Mass Transf 55(23–24):7330–7335CrossRef Mazumder S, Ravishankar M (2012) General procedure for calculation of diffuse view factors between arbitrary planar polygons. Int J Heat Mass Transf 55(23–24):7330–7335CrossRef
46.
Zurück zum Zitat Rao VR, Sastri VMK (1996) Efficient evaluation of diffuse view factors for radiation. Int J Heat Mass Transf 39(6):1281–1286CrossRef Rao VR, Sastri VMK (1996) Efficient evaluation of diffuse view factors for radiation. Int J Heat Mass Transf 39(6):1281–1286CrossRef
47.
Zurück zum Zitat Sparrow EM (1963) A new and simpler formulation for radiative angle factors. J Heat Transfer 85(2):81–87CrossRef Sparrow EM (1963) A new and simpler formulation for radiative angle factors. J Heat Transfer 85(2):81–87CrossRef
48.
Zurück zum Zitat Mitalas GP, Stephenson DG (1967) Room thermal response factors. ASHRAE Trans 73(1):2.1-2.10 Mitalas GP, Stephenson DG (1967) Room thermal response factors. ASHRAE Trans 73(1):2.1-2.10
49.
Zurück zum Zitat Stephenson DG, Mitalas GP (1971) Calculation of heat conduction transfer functions for multi-layers slabs. Air Cond Engrs Trans (United States) 77:117–126 Stephenson DG, Mitalas GP (1971) Calculation of heat conduction transfer functions for multi-layers slabs. Air Cond Engrs Trans (United States) 77:117–126
50.
Zurück zum Zitat Ceylan HT, Myers GE (1980) Long-time solutions to heat-conduction transients with time-dependent inputs. ASME J Heat Transfer 102(1):115–120CrossRef Ceylan HT, Myers GE (1980) Long-time solutions to heat-conduction transients with time-dependent inputs. ASME J Heat Transfer 102(1):115–120CrossRef
51.
Zurück zum Zitat Seem JE (1987) Modeling of heat transfer in buildings (Doctoral dissertation, The University of Wisconsin-Madison) Seem JE (1987) Modeling of heat transfer in buildings (Doctoral dissertation, The University of Wisconsin-Madison)
52.
Zurück zum Zitat Hillel D (1982) Introduction to soil physics. Academic Press, New York (No. 631.43 H54) Hillel D (1982) Introduction to soil physics. Academic Press, New York (No. 631.43 H54)
54.
Zurück zum Zitat Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol Climatol 39(10):1679–1699CrossRef Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol Climatol 39(10):1679–1699CrossRef
55.
Zurück zum Zitat McCaw WL (1997) Predicting fire spread in Western Australian mallee-heath scrubland (Doctoral dissertation, University of New South Wales, Australian Defence Force Academy) McCaw WL (1997) Predicting fire spread in Western Australian mallee-heath scrubland (Doctoral dissertation, University of New South Wales, Australian Defence Force Academy)
56.
Zurück zum Zitat Mindykowski P, Fuentes A, Consalvi JL, Porterie B (2011) Piloted ignition of wildland fuels. Fire Saf J 46(1–2):34–40CrossRef Mindykowski P, Fuentes A, Consalvi JL, Porterie B (2011) Piloted ignition of wildland fuels. Fire Saf J 46(1–2):34–40CrossRef
57.
Zurück zum Zitat Rivera J, Hernández N, Consalvi JL, Reszka P, Contreras J, Fuentes A (2021) Ignition of wildland fuels by idealized firebrands. Fire Saf J 120:103036CrossRef Rivera J, Hernández N, Consalvi JL, Reszka P, Contreras J, Fuentes A (2021) Ignition of wildland fuels by idealized firebrands. Fire Saf J 120:103036CrossRef
58.
Zurück zum Zitat Baranovskiy N, Malinin A (2020) Mathematical simulation of forest fire impact on industrial facilities and wood-based buildings. Sustainability 12(13):5475CrossRef Baranovskiy N, Malinin A (2020) Mathematical simulation of forest fire impact on industrial facilities and wood-based buildings. Sustainability 12(13):5475CrossRef
61.
Zurück zum Zitat Nelson RM Jr (1984) A method for describing equilibrium moisture content of forest fuels. Can J For Res 14(4):597–600CrossRef Nelson RM Jr (1984) A method for describing equilibrium moisture content of forest fuels. Can J For Res 14(4):597–600CrossRef
62.
Zurück zum Zitat Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York
63.
Zurück zum Zitat Beyer WH (1996) CRC standard mathematical tables, 30th edn. CRC Press, Boca Raton, pp 695–697 Beyer WH (1996) CRC standard mathematical tables, 30th edn. CRC Press, Boca Raton, pp 695–697
64.
Zurück zum Zitat Nusselt W, Jürges W (1922) Die Kühlung einer ebenen Wand durch einen Luftstrom (The cooling of a plane wall by an air flow). Gesundheits Ingenieur 52(45):641–642 Nusselt W, Jürges W (1922) Die Kühlung einer ebenen Wand durch einen Luftstrom (The cooling of a plane wall by an air flow). Gesundheits Ingenieur 52(45):641–642
65.
Zurück zum Zitat Palyvos JA (2008) A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Appl Therm Eng 28(8–9):801–808CrossRef Palyvos JA (2008) A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Appl Therm Eng 28(8–9):801–808CrossRef
66.
Zurück zum Zitat McAdams WH (1954) Heat transmission, 3rd edn. McGraw-Hill Kogakusha, Tokyo, p 249 McAdams WH (1954) Heat transmission, 3rd edn. McGraw-Hill Kogakusha, Tokyo, p 249
68.
Zurück zum Zitat ASHRAE (1989) 1989 ASHRAE handbook—fundamentals. American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc, Atlanta ASHRAE (1989) 1989 ASHRAE handbook—fundamentals. American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc, Atlanta
69.
Zurück zum Zitat Sparrow EM, Ramsey JW, Mass EA (1979) Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate. ASME J Heat Transfer 101(2):199–204CrossRef Sparrow EM, Ramsey JW, Mass EA (1979) Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate. ASME J Heat Transfer 101(2):199–204CrossRef
70.
Zurück zum Zitat Walton GN (1983) Thermal analysis research program reference manual. National Bureau of Standards, Washington, DCCrossRef Walton GN (1983) Thermal analysis research program reference manual. National Bureau of Standards, Washington, DCCrossRef
71.
Zurück zum Zitat Walton GN (1981) Passive solar extension of the building loads analysis and system thermodynamics (BLAST) program, technical report. United States Army Construction Engineering Research Laboratory, Champaign Walton GN (1981) Passive solar extension of the building loads analysis and system thermodynamics (BLAST) program, technical report. United States Army Construction Engineering Research Laboratory, Champaign
72.
Zurück zum Zitat Lawrence Berkeley Laboratory (LBL) (1994) DOE2.1E-053 source code. Lawrence Berkeley Laboratory (LBL), Berkeley Lawrence Berkeley Laboratory (LBL) (1994) DOE2.1E-053 source code. Lawrence Berkeley Laboratory (LBL), Berkeley
73.
Zurück zum Zitat Mirsadeghi M, Costola D, Blocken B, Hensen JL (2013) Review of external convective heat transfer coefficient models in building energy simulation programs: implementation and uncertainty. Appl Therm Eng 56(1–2):134–151CrossRef Mirsadeghi M, Costola D, Blocken B, Hensen JL (2013) Review of external convective heat transfer coefficient models in building energy simulation programs: implementation and uncertainty. Appl Therm Eng 56(1–2):134–151CrossRef
74.
Zurück zum Zitat Booten C, Kruis N, Christensen C (2012) Identifying and resolving issues in energyplus and DOE-2 window heat transfer calculations (No. NREL/TP-5500-55787). National Renewable Energy Lab. (NREL), GoldenCrossRef Booten C, Kruis N, Christensen C (2012) Identifying and resolving issues in energyplus and DOE-2 window heat transfer calculations (No. NREL/TP-5500-55787). National Renewable Energy Lab. (NREL), GoldenCrossRef
75.
Zurück zum Zitat Yazdanian M, Klems JH (1994) Measurement of the exterior convective film coefficient for windows in low-rise buildings. ASHRAE Trans 100 (Part 1):1087–1096 Yazdanian M, Klems JH (1994) Measurement of the exterior convective film coefficient for windows in low-rise buildings. ASHRAE Trans 100 (Part 1):1087–1096
Metadaten
Titel
A Planning Model for Predicting Ignition Potential of Complex Fuels in Diurnally Variable Environments
verfasst von
Saurabh Saxena
Ritambhara Raj Dubey
Neda Yaghoobian
Publikationsdatum
01.07.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01450-3

Weitere Artikel der Ausgabe 5/2023

Fire Technology 5/2023 Zur Ausgabe