Skip to main content

2024 | OriginalPaper | Buchkapitel

AI Deep Learning Generative Models for Drug Discovery

verfasst von : Qifeng Bai, Jian Ma, Tingyang Xu

Erschienen in: Applications of Generative AI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence (AI) deep learning generative models play an increasingly important role in drug design. Developments of different drug generative models can save capital and time to promote new drug discovery. AI deep learning generative models can be divided into different generative models based on the different levels of dimensional features of receptors and ligands such as SMILES generative models, molecular graph generative models, and 3D molecule generative models. Besides, based on the different algorithms, AI deep learning generative models for drug discovery can be roughly classified as variational autoencoder generative model, generative adversarial network generative model, and flow based generative model, and diffusion generative model. In this chapter, the classification, general mathematical methods, and research reports of AI deep learning generative models are summarized based on the different levels of dimensional features and algorithms. This chapter proposes an interesting topic and a deep understanding of AI deep learning generative models for the scientific community.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Bai, Q., Tan, S., Xu, T., Liu, H., Huang, J., & Yao, X. (2021). MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in bioinformatics, 22(3), bbaa161. Bai, Q., Tan, S., Xu, T., Liu, H., Huang, J., & Yao, X. (2021). MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in bioinformatics, 22(3), bbaa161.
7.
Zurück zum Zitat Bai, Q., Liu, S., Tian, Y., Xu, T., Banegas-Luna, A. J., Pérez-Sánchez, H., et al. (2022). Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(3), e1581. https://doi.org/10.1002/wcms.1581CrossRef Bai, Q., Liu, S., Tian, Y., Xu, T., Banegas-Luna, A. J., Pérez-Sánchez, H., et al. (2022). Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(3), e1581. https://​doi.​org/​10.​1002/​wcms.​1581CrossRef
12.
Zurück zum Zitat Wang, Y., Li, Z., & Farimani, A. B. (2022). Graph neural networks for molecules. arXiv preprint arXiv:220905582. Wang, Y., Li, Z., & Farimani, A. B. (2022). Graph neural networks for molecules. arXiv preprint arXiv:220905582.
14.
Zurück zum Zitat Li, Y., Vinyals, O., Dyer, C., Pascanu, R., & Battaglia, P. Learning deep generative models of graphs. arXiv preprint arXiv:180303324. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., & Battaglia, P. Learning deep generative models of graphs. arXiv preprint arXiv:180303324.
15.
Zurück zum Zitat Satorras, V. G., Hoogeboom, E., & Welling M. (2021). E(n) equivariant graph neural networks. In International Conference on Machine Learning: PMLR (pp. 9323–9332). Satorras, V. G., Hoogeboom, E., & Welling M. (2021). E(n) equivariant graph neural networks. In International Conference on Machine Learning: PMLR (pp. 9323–9332).
16.
Zurück zum Zitat Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:13126114. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:13126114.
17.
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S, Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680). Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S, Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
18.
Zurück zum Zitat Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In International Conference on Machine Learning: PMLR (pp. 1530–1538). Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In International Conference on Machine Learning: PMLR (pp. 1530–1538).
19.
Zurück zum Zitat Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In Advances in neural information processing systems (Vol. 33, pp. 6840–6451). Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In Advances in neural information processing systems (Vol. 33, pp. 6840–6451).
20.
Zurück zum Zitat Segler, M. H., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1), 120–131.CrossRef Segler, M. H., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1), 120–131.CrossRef
21.
Zurück zum Zitat Bagal, V., Aggarwal, R., Vinod, P., & Priyakumar, U. D. (2021). MolGPT: Molecular generation using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9), 2064–2076.CrossRef Bagal, V., Aggarwal, R., Vinod, P., & Priyakumar, U. D. (2021). MolGPT: Molecular generation using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9), 2064–2076.CrossRef
22.
Zurück zum Zitat Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. In International Conference on Machine Learning: PMLR (pp. 2323–2332). Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. In International Conference on Machine Learning: PMLR (pp. 2323–2332).
23.
Zurück zum Zitat Jin, W., Barzilay, R., & Jaakkola, T. (2020). Hierarchical generation of molecular graphs using structural motifs. In International Conference on Machine Learning: PMLR (pp. 4839–4848). Jin, W., Barzilay, R., & Jaakkola, T. (2020). Hierarchical generation of molecular graphs using structural motifs. In International Conference on Machine Learning: PMLR (pp. 4839–4848).
24.
Zurück zum Zitat Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., & Tang, J. (2020). Graphaf: A flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:200109382. Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., & Tang, J. (2020). Graphaf: A flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:200109382.
25.
Zurück zum Zitat Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:160508803. Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:160508803.
26.
Zurück zum Zitat Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher, V., & Frossard, P. (2022). DiGress: Discrete Denoising diffusion for graph generation. arXiv preprint arXiv:220914734. Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher, V., & Frossard, P. (2022). DiGress: Discrete Denoising diffusion for graph generation. arXiv preprint arXiv:220914734.
27.
Zurück zum Zitat Ragoza, M., Masuda, T., & Koes, D. R. (2022). Generating 3D molecules conditional on receptor binding sites with deep generative models. Chemical Science, 13(9), 2701–2713.CrossRef Ragoza, M., Masuda, T., & Koes, D. R. (2022). Generating 3D molecules conditional on receptor binding sites with deep generative models. Chemical Science, 13(9), 2701–2713.CrossRef
28.
Zurück zum Zitat Luo, Y., & Ji, S. (2022). An autoregressive flow model for 3D molecular geometry generation from scratch. In International Conference on Learning Representations (ICLR). Luo, Y., & Ji, S. (2022). An autoregressive flow model for 3D molecular geometry generation from scratch. In International Conference on Learning Representations (ICLR).
29.
Zurück zum Zitat Liu, M., Luo, Y., Uchino, K., Maruhashi, K., & Ji. S. (2022). Generating 3D molecules for target protein binding. arXiv preprint arXiv:220409410. Liu, M., Luo, Y., Uchino, K., Maruhashi, K., & Ji. S. (2022). Generating 3D molecules for target protein binding. arXiv preprint arXiv:220409410.
30.
Zurück zum Zitat Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022). Equivariant diffusion for molecule generation in 3D. In International Conference on Machine Learning: PMLR (pp. 8867–8887). Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022). Equivariant diffusion for molecule generation in 3D. In International Conference on Machine Learning: PMLR (pp. 8867–8887).
31.
Zurück zum Zitat Huang, L., Zhang, H., Xu, T., & Wong, K.-C. (2022). MDM: Molecular diffusion model for 3D molecule generation. arXiv preprint arXiv:220905710. Huang, L., Zhang, H., Xu, T., & Wong, K.-C. (2022). MDM: Molecular diffusion model for 3D molecule generation. arXiv preprint arXiv:220905710.
32.
Zurück zum Zitat Huang, L. (2023). A dual diffusion model enables 3D binding bioactive molecule generation and lead optimization given target pockets. bioRxiv 2023:2023.01.28.526011. Huang, L. (2023). A dual diffusion model enables 3D binding bioactive molecule generation and lead optimization given target pockets. bioRxiv 2023:2023.01.28.526011.
33.
Zurück zum Zitat Xu, M., Powers, A., Dror, R., Ermon, S., & Leskovec, J. (2023). Geometric latent diffusion models for 3D molecule generation. arXiv preprint arXiv:230501140. Xu, M., Powers, A., Dror, R., Ermon, S., & Leskovec, J. (2023). Geometric latent diffusion models for 3D molecule generation. arXiv preprint arXiv:230501140.
34.
Zurück zum Zitat Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10684–10695). Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10684–10695).
35.
Zurück zum Zitat Zhang, Z., Min, Y., Zheng, S., & Liu, Q. (2023). Molecule generation for target protein binding with structural motifs. In The Eleventh International Conference on Learning Representations. Zhang, Z., Min, Y., Zheng, S., & Liu, Q. (2023). Molecule generation for target protein binding with structural motifs. In The Eleventh International Conference on Learning Representations.
36.
Zurück zum Zitat Huang, Y., Peng, X., Ma, J., & Zhang, M. (2022). 3Dlinker: An E(3) equivariant variational autoencoder for molecular linker design. arXiv preprint arXiv:220507309. Huang, Y., Peng, X., Ma, J., & Zhang, M. (2022). 3Dlinker: An E(3) equivariant variational autoencoder for molecular linker design. arXiv preprint arXiv:220507309.
37.
Zurück zum Zitat Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (Vol. 29). Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (Vol. 29).
38.
Zurück zum Zitat Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:170104862. Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:170104862.
39.
Zurück zum Zitat Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:170107875. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:170107875.
40.
Zurück zum Zitat Levina, E., & Bickel, P. (2001). The earth mover’s distance is the mallows distance: Some insights from statistics. In Proceedings Eighth IEEE International Conference on Computer Vision (ICCV 2001) (pp. 251–256). IEEE. Levina, E., & Bickel, P. (2001). The earth mover’s distance is the mallows distance: Some insights from statistics. In Proceedings Eighth IEEE International Conference on Computer Vision (ICCV 2001) (pp. 251–256). IEEE.
41.
Zurück zum Zitat Bai, Q. (2020). Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint arXiv:200609747. Bai, Q. (2020). Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint arXiv:200609747.
42.
Zurück zum Zitat Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. In International Conference on Machine Learning: PMLR (pp. 1945–1954). Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. In International Conference on Machine Learning: PMLR (pp. 1945–1954).
43.
Zurück zum Zitat Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real NVP. arXiv:160508803. Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real NVP. arXiv:160508803.
44.
Zurück zum Zitat Kingma, D. P., & Dhariwal, P. J. (2018). Glow: Generative flow with invertible 1x1 convolutions. Adv Neural Inf Process Syst. 2018;31. Kingma, D. P., & Dhariwal, P. J. (2018). Glow: Generative flow with invertible 1x1 convolutions. Adv Neural Inf Process Syst. 2018;31.
45.
Zurück zum Zitat Papamakarios G, Pavlakou T, Murray IJAinips. Masked autoregressive flow for density estimation. In Advances in neural information processing systems (Vol. 30). Papamakarios G, Pavlakou T, Murray IJAinips. Masked autoregressive flow for density estimation. In Advances in neural information processing systems (Vol. 30).
46.
Zurück zum Zitat Frey, N. C., & Gadepally, V., & Ramsundar, B. (2022). Fastflows: Flow-based models for molecular graph generation. arXiv preprint arXiv:220112419. Frey, N. C., & Gadepally, V., & Ramsundar, B. (2022). Fastflows: Flow-based models for molecular graph generation. arXiv preprint arXiv:220112419.
47.
Zurück zum Zitat Madhawa, K., Ishiguro, K., Nakago, K., & Abe, M. GraphNVP: An invertible flow model for generating molecular graphs. arXiv preprint arXiv:190511600. Madhawa, K., Ishiguro, K., Nakago, K., & Abe, M. GraphNVP: An invertible flow model for generating molecular graphs. arXiv preprint arXiv:190511600.
48.
Zurück zum Zitat Welling, M., & The, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th International conference on Machine Learning (ICML-11) (pp. 681–688). Welling, M., & The, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th International conference on Machine Learning (ICML-11) (pp. 681–688).
49.
Zurück zum Zitat Ho, J., Jain, A., & Abbeel, P. J. A. (2020). Denoising diffusion probabilistic models. arXiv:200611239. Ho, J., Jain, A., & Abbeel, P. J. A. (2020). Denoising diffusion probabilistic models. arXiv:200611239.
50.
Zurück zum Zitat Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning: PMLR (pp. 2256–2565). Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning: PMLR (pp. 2256–2565).
51.
Zurück zum Zitat Song, Y., & Ermon, S. J. (2019). Generative modeling by estimating gradients of the data distribution. In Advances in neural information processing systems (Vol. 32). Song, Y., & Ermon, S. J. (2019). Generative modeling by estimating gradients of the data distribution. In Advances in neural information processing systems (Vol. 32).
52.
Zurück zum Zitat Corso, G., Stärk, H., Jing, B., Barzilay, R., & Jaakkola, T. (2022). Diffdock: Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:221001776. Corso, G., Stärk, H., Jing, B., Barzilay, R., & Jaakkola, T. (2022). Diffdock: Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:221001776.
53.
Zurück zum Zitat Chen, X., Mishra, N., Rohaninejad, M., & Abbeel, P. (2018). Pixelsnail: An improved autoregressive generative model. In International Conference on Machine Learning: PMLR (pp. 864–872). Chen, X., Mishra, N., Rohaninejad, M., & Abbeel, P. (2018). Pixelsnail: An improved autoregressive generative model. In International Conference on Machine Learning: PMLR (pp. 864–872).
54.
Zurück zum Zitat LeCun, Y., Chopra, S., Ranzato, M., & Huang, F.-J. (2007). Energy-based models in document recognition and computer vision. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (pp. 337–341). IEEE. LeCun, Y., Chopra, S., Ranzato, M., & Huang, F.-J. (2007). Energy-based models in document recognition and computer vision. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (pp. 337–341). IEEE.
55.
Zurück zum Zitat Xie, J., Zhu, S.-C., & Wu, Y. N. (2019). Learning energy-based spatial-temporal generative convnets for dynamic patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(2), 516–531.CrossRef Xie, J., Zhu, S.-C., & Wu, Y. N. (2019). Learning energy-based spatial-temporal generative convnets for dynamic patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(2), 516–531.CrossRef
56.
Zurück zum Zitat Van Den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. In International Conference on Machine Learning: PMLR (pp. 1747–1756). Van Den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. In International Conference on Machine Learning: PMLR (pp. 1747–1756).
57.
Zurück zum Zitat Gao, R., Song, Y., Poole, B., & Wu, Y. N., & Kingma, D. P. (2020). Learning energy-based models by diffusion recovery likelihood. arXiv preprint arXiv:201208125. Gao, R., Song, Y., Poole, B., & Wu, Y. N., & Kingma, D. P. (2020). Learning energy-based models by diffusion recovery likelihood. arXiv preprint arXiv:201208125.
Metadaten
Titel
AI Deep Learning Generative Models for Drug Discovery
verfasst von
Qifeng Bai
Jian Ma
Tingyang Xu
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46238-2_23

Premium Partner