Skip to main content

18.05.2024 | Original Paper

Delay-dependent stability of a class of Runge-Kutta methods for neutral differential equations

verfasst von: Zheng Wang, Yuhao Cong

Erschienen in: Numerical Algorithms

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a class of Runge-Kutta methods for solving neutral delay differential equations (NDDEs) is proposed, which was first introduced by Bassenne et al. (J. Comput. Phys. 424, 109847, 2021) for ODEs. In the study, the explicit Runge-Kutta method is multiplied by an operator, which is a Time-Accurate and highly-Stable Explicit operator (TASE-RK), resulting in higher stability than explicit RK. Recently, the multi-parameter TASE-W method was extended by González-Pinto et al. (Appl. Numer. Math. 188, 129–145, 2023). We generalized TASE-RK and TASE-W to NDDEs for the first time. Then, by applying the argument principle, sufficient conditions for delay-dependent stability of TASE-RK and TASE-W combined with Lagrange interpolation for NDDEs are investigated. Finally, numerical examples are carried out to verify the theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bassenne, M., Fu, L., Mani, A.: Time-Accurate and highly-Stable Explicit operators for stiff differential equations. J. Comput. Phys. 424, 109847 (2021)MathSciNetCrossRef Bassenne, M., Fu, L., Mani, A.: Time-Accurate and highly-Stable Explicit operators for stiff differential equations. J. Comput. Phys. 424, 109847 (2021)MathSciNetCrossRef
2.
Zurück zum Zitat Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)CrossRef Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)CrossRef
3.
Zurück zum Zitat Brown, J.W., Churchill, R.V.: Complex Variables and Applications. McGraw-Hill Companies Inc. and China Machine Press, Beijing (2004) Brown, J.W., Churchill, R.V.: Complex Variables and Applications. McGraw-Hill Companies Inc. and China Machine Press, Beijing (2004)
4.
Zurück zum Zitat Byrnes, C.I., Spong, M.W., Tarn, T.J.: A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. Math. Syst. Theory. 17, 97–133 (1984)MathSciNetCrossRef Byrnes, C.I., Spong, M.W., Tarn, T.J.: A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. Math. Syst. Theory. 17, 97–133 (1984)MathSciNetCrossRef
5.
Zurück zum Zitat Calvo, M., Montijano, J.I., Rández, L.: A note on the stability of time-accurate and highly-stable explicit operators for stiff differential equations. J. Comput. Phys. 436, 110316 (2021)MathSciNetCrossRef Calvo, M., Montijano, J.I., Rández, L.: A note on the stability of time-accurate and highly-stable explicit operators for stiff differential equations. J. Comput. Phys. 436, 110316 (2021)MathSciNetCrossRef
6.
Zurück zum Zitat Cong, Y., Wang, Y., Hu, G.D.: Weak delay-dependent stability of Runge-Kutta methods for differential systems with distributed delays. J. Comput. Appl. Math. 342, 70–82 (2018)MathSciNetCrossRef Cong, Y., Wang, Y., Hu, G.D.: Weak delay-dependent stability of Runge-Kutta methods for differential systems with distributed delays. J. Comput. Appl. Math. 342, 70–82 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat González-Pinto, S., Hernández-Abreu, D., Pagano, G., Pérez-Rodríguez, S.: Generalized TASE-RK methods for stiff problems. Appl. Numer. Math. 188, 129–145 (2023)MathSciNetCrossRef González-Pinto, S., Hernández-Abreu, D., Pagano, G., Pérez-Rodríguez, S.: Generalized TASE-RK methods for stiff problems. Appl. Numer. Math. 188, 129–145 (2023)MathSciNetCrossRef
8.
Zurück zum Zitat Guglielmi, N.: On the asymptotic stability properties of Runge-Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997)MathSciNetCrossRef Guglielmi, N.: On the asymptotic stability properties of Runge-Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997)MathSciNetCrossRef
9.
Zurück zum Zitat Hale, J.K., Lunel, S.M.V.: Strong stabilization of neutral functional differential equations. IMA J. Math. Control. Inf. 19, 5–23 (2002)MathSciNetCrossRef Hale, J.K., Lunel, S.M.V.: Strong stabilization of neutral functional differential equations. IMA J. Math. Control. Inf. 19, 5–23 (2002)MathSciNetCrossRef
10.
Zurück zum Zitat Hu, G.D.: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays. Kybernetika 54, 718–735 (2018)MathSciNet Hu, G.D.: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays. Kybernetika 54, 718–735 (2018)MathSciNet
11.
Zurück zum Zitat Hu, G.D., Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT Numer. Math. 35, 504–515 (1995)MathSciNetCrossRef Hu, G.D., Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT Numer. Math. 35, 504–515 (1995)MathSciNetCrossRef
12.
Zurück zum Zitat Hu, G.D., Mitsui, T.: Delay-dependent stability of numerical methods for delay differential systems of neutral type. BIT Numer. Math. 57, 731–752 (2017)MathSciNetCrossRef Hu, G.D., Mitsui, T.: Delay-dependent stability of numerical methods for delay differential systems of neutral type. BIT Numer. Math. 57, 731–752 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat Hu, X., Cong, Y., Hu, G.D.: Delay-dependent stability of Runge-Kutta methods for linear delay differential-algebraic equations. J. Comput. Appl. Math. 363, 300–311 (2020)MathSciNetCrossRef Hu, X., Cong, Y., Hu, G.D.: Delay-dependent stability of Runge-Kutta methods for linear delay differential-algebraic equations. J. Comput. Appl. Math. 363, 300–311 (2020)MathSciNetCrossRef
14.
Zurück zum Zitat Jury, E.I.: Theory and Application of \(z\)-Transform Method. John Wiley and Sons, New York (1964) Jury, E.I.: Theory and Application of \(z\)-Transform Method. John Wiley and Sons, New York (1964)
15.
Zurück zum Zitat Kim, A.V., Ivanov, A.V.: Systems with delays: Analysis, Control, and Computations. Scrivener Publishing LLC, Salem (2015)CrossRef Kim, A.V., Ivanov, A.V.: Systems with delays: Analysis, Control, and Computations. Scrivener Publishing LLC, Salem (2015)CrossRef
16.
Zurück zum Zitat Kolmanovskii, V.B., Myshkis, A.D.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dodrecht (1999)CrossRef Kolmanovskii, V.B., Myshkis, A.D.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dodrecht (1999)CrossRef
17.
Zurück zum Zitat Kyrychko, Y.N., Hogan, S.J.: On the use of delay equations in engineering applications. J. Vib. Control. 16, 943–960 (2010)MathSciNetCrossRef Kyrychko, Y.N., Hogan, S.J.: On the use of delay equations in engineering applications. J. Vib. Control. 16, 943–960 (2010)MathSciNetCrossRef
18.
Zurück zum Zitat Shen, M., Fei, C., Fei, W., Mao, X., Mei, C.: Delay-dependent stability of highly nonlinear neutral stochastic functional differential equations. Int. J. Robust Nonlinear Control. 32(18), 9957–9976 (2022)MathSciNetCrossRef Shen, M., Fei, C., Fei, W., Mao, X., Mei, C.: Delay-dependent stability of highly nonlinear neutral stochastic functional differential equations. Int. J. Robust Nonlinear Control. 32(18), 9957–9976 (2022)MathSciNetCrossRef
19.
Zurück zum Zitat Shen, M., Fei, W., Mao, X., Liang, Y.: Stability of highly nonlinear neutral stochastic differential delay equations. Syst. Control. Lett. 115, 1–8 (2018)MathSciNetCrossRef Shen, M., Fei, W., Mao, X., Liang, Y.: Stability of highly nonlinear neutral stochastic differential delay equations. Syst. Control. Lett. 115, 1–8 (2018)MathSciNetCrossRef
20.
Zurück zum Zitat Wang, W.: Nonlinear stability of one-leg methods for neutral Volterra delay-integro-differential equations. Math. Comput. Simul. 97, 147–161 (2014)MathSciNetCrossRef Wang, W.: Nonlinear stability of one-leg methods for neutral Volterra delay-integro-differential equations. Math. Comput. Simul. 97, 147–161 (2014)MathSciNetCrossRef
Metadaten
Titel
Delay-dependent stability of a class of Runge-Kutta methods for neutral differential equations
verfasst von
Zheng Wang
Yuhao Cong
Publikationsdatum
18.05.2024
Verlag
Springer US
Erschienen in
Numerical Algorithms
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-024-01846-4

Premium Partner