Skip to main content

2023 | OriginalPaper | Buchkapitel

Develop a Quantum Based Time Scheduling Algorithm for Digital Microfluidic Biochips

verfasst von : N. Nirmala, D. Gracia Nirmala Rani

Erschienen in: Proceedings of Fourth International Conference on Computing, Communications, and Cyber-Security

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of microfluidic biochips has been one of the fastest-growing study fields in recent years. Microfluidic biochips are guiding the miniaturization of laboratory-based bioprotocols on a tiny chip. All bioprotocols, with the exception of dilution, include a stage called “sample preparation” that allows for the blending of several reagents in a specific volumetric ratio. It calls for mixing and storing a number of reagent fluids for real-time implementation, which offers a cheap and dependable method for on-chip sample preparation. Concentrate on minimizing reagent consumption, reducing fluid waste, achieving an accurate volumetric ratio, maximizing resource utilization, minimizing dilution time, and minimizing cycle count during sample preparation because many scheduling algorithms have been developed for performing sequences of mixing operations. To obtain a fixed concentration value, some of the reactants are blended and diluted in the appropriate collection. In practice, a reservoir switching operation takes longer than a mixing operation because it involves unloading, washing, and loading. The reservoir-constrained optimal scheduling (ROS) algorithm proposed a workaround to resolve the switching operation. This algorithm is used to speed up reservoir changeover, although more storage units are needed as a result. The cost of chip manufacture limits the number of storage units in real-time implementation. Hence, we propose a time quantum-based scheduling algorithm for digital microfluidic biochips to meet the storage constraint while reducing the switching count. The time it requires to execute a dilution operation is symbolized by the term “mixing time,” and the term “tree” represents the preparation of a sample. The proposed algorithm focuses on the mixing graph and scheduling algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chatterjee D, Ytterberg AJ, Son SU, Loo JA, Garrell RL (2010) Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis. Anal Chem 82(5):2095–2101 Chatterjee D, Ytterberg AJ, Son SU, Loo JA, Garrell RL (2010) Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis. Anal Chem 82(5):2095–2101
2.
Zurück zum Zitat Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip 4(4):310–315 Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip 4(4):310–315
3.
Zurück zum Zitat Daw R, Finkelstein J (2006) Insight: lab on a chip. Nature 442(7101):367–418 Daw R, Finkelstein J (2006) Insight: lab on a chip. Nature 442(7101):367–418
4.
Zurück zum Zitat Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip 7(9):1094–1110 Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip 7(9):1094–1110
5.
Zurück zum Zitat Neuži P, Giselbrecht S, Länge K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discovery 11(8):620–632 Neuži P, Giselbrecht S, Länge K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discovery 11(8):620–632
6.
Zurück zum Zitat Welch ERF, Lin YY, Madison A, Fair RB (2011) Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J 6(2):165–176 Welch ERF, Lin YY, Madison A, Fair RB (2011) Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J 6(2):165–176
7.
Zurück zum Zitat Sarkar S, Sau S, Paul R, Mandal S (2021) FPGA based firmware design—the routing of microfluid droplet based on Lee’s algorithm. In: Sahoo JP, Tripathy AK, Mohanty M, Li KC, Nayak AK (eds) Advances in distributed computing and machine learning. LNNS, vol 302. Springer, Singapore. http://doi.org/10.1007/978-981-16-4807-6_13 Sarkar S, Sau S, Paul R, Mandal S (2021) FPGA based firmware design—the routing of microfluid droplet based on Lee’s algorithm. In: Sahoo JP, Tripathy AK, Mohanty M, Li KC, Nayak AK (eds) Advances in distributed computing and machine learning. LNNS, vol 302. Springer, Singapore. http://​doi.​org/​10.​1007/​978-981-16-4807-6_​13
8.
9.
Zurück zum Zitat Rensch C, Lindner S, Salvamoser R, Leidner S, Bold C, Samper V, Taylor D, Baller M, Riese S, Bartenstein P, Wangler C, Wangler B (2014) A solvent resistant lab-on-chip platform for radiochemistry applications. Lab-on-a-Chip 14(14):2556–2564CrossRef Rensch C, Lindner S, Salvamoser R, Leidner S, Bold C, Samper V, Taylor D, Baller M, Riese S, Bartenstein P, Wangler C, Wangler B (2014) A solvent resistant lab-on-chip platform for radiochemistry applications. Lab-on-a-Chip 14(14):2556–2564CrossRef
10.
Zurück zum Zitat Su F, Chakrabarty K (2004) Architectural-level synthesis of digital microfluidics based biochips. In: Proceedings of IEEE/ACM ICCAD, pp 223–228 Su F, Chakrabarty K (2004) Architectural-level synthesis of digital microfluidics based biochips. In: Proceedings of IEEE/ACM ICCAD, pp 223–228
11.
Zurück zum Zitat Ho T-Y, Zeng J, Chakrabarty K (2010) Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of IEEE/ACM ICCAD, pp 578–585 Ho T-Y, Zeng J, Chakrabarty K (2010) Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of IEEE/ACM ICCAD, pp 578–585
12.
Zurück zum Zitat Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24(1):10–24 Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24(1):10–24
13.
Zurück zum Zitat Liu C-H, Chang H-H, Liang T-C, Huang J-D (2013) Sample preparation for many-reactant bioassay on DMFBs using common dilution operation sharing. In: Proceedings of IEEE/ACM ICCAD, pp 615–621 Liu C-H, Chang H-H, Liang T-C, Huang J-D (2013) Sample preparation for many-reactant bioassay on DMFBs using common dilution operation sharing. In: Proceedings of IEEE/ACM ICCAD, pp 615–621
14.
Zurück zum Zitat Grissom D, Brisk P (2012) Path scheduling on digital microfluidic biochips. In: Proceedings of IEEE/ACM DAC, pp 26–35 Grissom D, Brisk P (2012) Path scheduling on digital microfluidic biochips. In: Proceedings of IEEE/ACM DAC, pp 26–35
15.
Zurück zum Zitat Luo L, Akella S (2011) Optimal scheduling of biochemical analyses on digital microfluidic systems. IEEE TASE 8(1):216–227 Luo L, Akella S (2011) Optimal scheduling of biochemical analyses on digital microfluidic systems. IEEE TASE 8(1):216–227
16.
Zurück zum Zitat Agarwal V, Singla A, Samiuddin M, Roy S, Ho T-Y, Sengupta I, Bhattacharya BB (2017) Reservoir and mixer constrained scheduling for sample preparation on digital microfluidic biochips. In: Proceedings of IEEE ASPDAC, pp 702–707 Agarwal V, Singla A, Samiuddin M, Roy S, Ho T-Y, Sengupta I, Bhattacharya BB (2017) Reservoir and mixer constrained scheduling for sample preparation on digital microfluidic biochips. In: Proceedings of IEEE ASPDAC, pp 702–707
Metadaten
Titel
Develop a Quantum Based Time Scheduling Algorithm for Digital Microfluidic Biochips
verfasst von
N. Nirmala
D. Gracia Nirmala Rani
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-1479-1_5