Skip to main content

2024 | OriginalPaper | Buchkapitel

Effect of Coal Ash–Geogrid Interaction on Static and Dynamic Behavior of Ash-Filled MSE Walls

verfasst von : Sajan Malviya, Prishati Raychowdhury

Erschienen in: Sustainable Construction Resources in Geotechnical Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Use of mechanically stabilized earth (MSE) is known to improve the static and seismic performance of highway retaining walls, bridge abutments, dams, and levees. The stabilization of the earth is generally done by placing reinforcing elements such as metal strips, geosynthetic layers, or micro-piles in different layers of the backfill soil. The general convention is to prefer granular soils over cohesive soils as backfills due to their better drainage and lower shrinkage-swelling potentials. Nowadays, as an economic alternative, utilization of coal ash as a backfill material in MSE walls is being widely explored. Coal ash being a lightweight material with better drainage characteristics than cohesive soil poses several potential benefits in terms of static earth pressure, swelling issues, and dynamic inertia. However, the response of this coal-ash-filled MSE walls when subjected to dynamic loads is a topic that demands further investigation. The primary challenge is to select a constitutive model and define its parameters in a manner, by the virtue of which nonlinear and cyclic behavior of coal ash can be simulated. Moreover, since studies emphasizing the modeling of interaction between ash fill and reinforcing material are limited, there is scope for exploration in this direction. In this context, the present study focuses on developing a robust and reliable numerical model using discrete finite element approach which addresses these two issues for static and dynamic loading case. The model has been validated with results in existing literature. The performance of the wall has been assessed in terms of important response parameters such as lateral displacement, acceleration response, and the strain levels in the reinforcement layers at the end of the construction and during a seismic event.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bao H, Hatzor YH, Huang X (2012) A new viscous boundary condition in the two-dimensional discontinuous deformation analysis method for wave propagation problems. Rock Mech Rock Eng 45:919–928 Bao H, Hatzor YH, Huang X (2012) A new viscous boundary condition in the two-dimensional discontinuous deformation analysis method for wave propagation problems. Rock Mech Rock Eng 45:919–928
2.
Zurück zum Zitat Bathurst RJ, Hatami K (1998) Seismic response analysis of a reinforced soil retaining wall. Geosynth Int 5(1–2):127–166CrossRef Bathurst RJ, Hatami K (1998) Seismic response analysis of a reinforced soil retaining wall. Geosynth Int 5(1–2):127–166CrossRef
3.
Zurück zum Zitat Bhattacharjee A, Krishna AM (2015) Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation. Int J Geosynth Ground Eng 1:1–14 Bhattacharjee A, Krishna AM (2015) Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation. Int J Geosynth Ground Eng 1:1–14
4.
Zurück zum Zitat Cai Z, Bathurst RJ (1995) Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by infinite element method. Comput Geotech 17:523–546CrossRef Cai Z, Bathurst RJ (1995) Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by infinite element method. Comput Geotech 17:523–546CrossRef
5.
Zurück zum Zitat Capilleri PP, Ferraiolo F, Motta E, Scotto M, Todaro M (2019) Static and dynamic analysis of two mechanically stabilized earth walls. Geosynth Int 26(1):26–41 Capilleri PP, Ferraiolo F, Motta E, Scotto M, Todaro M (2019) Static and dynamic analysis of two mechanically stabilized earth walls. Geosynth Int 26(1):26–41
6.
Zurück zum Zitat Day RA, Potts DM (1990) Curved Mindlin beam and axi-symmetric shell elements—a new approach. Int J Num Meth Eng 30:1263–1274CrossRef Day RA, Potts DM (1990) Curved Mindlin beam and axi-symmetric shell elements—a new approach. Int J Num Meth Eng 30:1263–1274CrossRef
7.
Zurück zum Zitat Day RA, Potts DM (1994) Zero thickness interface elements-numerical stability and application. Int J Num Anal Meth Geomech 18:689–708CrossRef Day RA, Potts DM (1994) Zero thickness interface elements-numerical stability and application. Int J Num Anal Meth Geomech 18:689–708CrossRef
8.
Zurück zum Zitat Duncan JM, Byrne PM, Wong KS, Mabry P (1980) Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses. ep. No. UCB/GT/80–01, Dept. of Civil Engineering, Univ. of California, Berkeley, CA Duncan JM, Byrne PM, Wong KS, Mabry P (1980) Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses. ep. No. UCB/GT/80–01, Dept. of Civil Engineering, Univ. of California, Berkeley, CA
9.
Zurück zum Zitat Hatami K, Bathurst RJ (2005) Development and verification of a numerical model for the analysis of geosynthetic reinforced soil segmental walls under working stress conditions. Can Geotech J 424:1066–1085CrossRef Hatami K, Bathurst RJ (2005) Development and verification of a numerical model for the analysis of geosynthetic reinforced soil segmental walls under working stress conditions. Can Geotech J 424:1066–1085CrossRef
10.
Zurück zum Zitat Ho SK (1993) A numerical investigation into the behaviour of reinforced soil walls. Ph.D. Thesis, University of Western Ontario, London, Canada, 408 p Ho SK (1993) A numerical investigation into the behaviour of reinforced soil walls. Ph.D. Thesis, University of Western Ontario, London, Canada, 408 p
11.
Zurück zum Zitat IS 1893-2002 (2002) Indian standard criteria for earthquake resistant design of structures, part 1—general provisions and buildings. Bureau of Indian Standards, New Delhi IS 1893-2002 (2002) Indian standard criteria for earthquake resistant design of structures, part 1—general provisions and buildings. Bureau of Indian Standards, New Delhi
12.
Zurück zum Zitat Jakka RS, Ramana GV, Datta M (2010) Shear behaviour of loose and compacted pond ash. Geotech Geol Eng 28:763–778CrossRef Jakka RS, Ramana GV, Datta M (2010) Shear behaviour of loose and compacted pond ash. Geotech Geol Eng 28:763–778CrossRef
13.
Zurück zum Zitat Karpurapu RG, Bathurst RJ (1995) Behaviour of geosynthetic reinforced soil retaining walls using the finite element method. Comput Geotech 17(3):279–299CrossRef Karpurapu RG, Bathurst RJ (1995) Behaviour of geosynthetic reinforced soil retaining walls using the finite element method. Comput Geotech 17(3):279–299CrossRef
14.
Zurück zum Zitat Krishna AM, Latha GM (2012) Modeling the dynamic response of wrap-faced reinforced soil retaining walls. Int J Geomech 12(4):439–450CrossRef Krishna AM, Latha GM (2012) Modeling the dynamic response of wrap-faced reinforced soil retaining walls. Int J Geomech 12(4):439–450CrossRef
15.
Zurück zum Zitat Kumar KPB, Umashankar B, Arulrajah A, Evans R (2021) Axial pullout resistance and interface direct shear properties of geogrids in pond ash. Int J Geosynth Ground Eng 7:22CrossRef Kumar KPB, Umashankar B, Arulrajah A, Evans R (2021) Axial pullout resistance and interface direct shear properties of geogrids in pond ash. Int J Geosynth Ground Eng 7:22CrossRef
16.
Zurück zum Zitat Ling HI, Cardany CP, Sun LX, Hashimoto H (2000) Finite element study of a geosynthetic-reinforced soil retaining wall with concrete-block facing. Geosynth Int 7(3):163–188CrossRef Ling HI, Cardany CP, Sun LX, Hashimoto H (2000) Finite element study of a geosynthetic-reinforced soil retaining wall with concrete-block facing. Geosynth Int 7(3):163–188CrossRef
17.
Zurück zum Zitat Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J Eng Mech 95:859–877 Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J Eng Mech 95:859–877
18.
Zurück zum Zitat Malviya S, Raychowdhury P (2022) Effect of reinforced soil interaction with other components on static and dynamic performance of MSE wall. In: Proceedings of 17th symposium on earthquake engineering. IIT Roorkee, India Malviya S, Raychowdhury P (2022) Effect of reinforced soil interaction with other components on static and dynamic performance of MSE wall. In: Proceedings of 17th symposium on earthquake engineering. IIT Roorkee, India
19.
Zurück zum Zitat Rayleigh JWS, Lindsay RB (1945) The theory of sound, vol 2, no 1. Dover Publications, New York Rayleigh JWS, Lindsay RB (1945) The theory of sound, vol 2, no 1. Dover Publications, New York
20.
Zurück zum Zitat Spears RE, Jensen SR (2012) Approach for selection of Rayleigh damping parameters used for time history analysis. J Pressure Vessel Tech ASME 134:061801-1 Spears RE, Jensen SR (2012) Approach for selection of Rayleigh damping parameters used for time history analysis. J Pressure Vessel Tech ASME 134:061801-1
21.
Zurück zum Zitat Woodward PK, Griffiths DV (1996) Comparison of the pseudo-static and dynamic behaviour of gravity retaining walls. Geotech Geol Eng 14:269–290CrossRef Woodward PK, Griffiths DV (1996) Comparison of the pseudo-static and dynamic behaviour of gravity retaining walls. Geotech Geol Eng 14:269–290CrossRef
22.
Zurück zum Zitat Yu Y, Bathurst RJ, Miyata Y (2015) Numerical analysis of a mechanically stabilized earth wall reinforced with steel strips. Soils Found 55(3):536–547CrossRef Yu Y, Bathurst RJ, Miyata Y (2015) Numerical analysis of a mechanically stabilized earth wall reinforced with steel strips. Soils Found 55(3):536–547CrossRef
Metadaten
Titel
Effect of Coal Ash–Geogrid Interaction on Static and Dynamic Behavior of Ash-Filled MSE Walls
verfasst von
Sajan Malviya
Prishati Raychowdhury
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9227-0_36