Skip to main content

2024 | OriginalPaper | Buchkapitel

Evaluation of Energy Consumption and Battery Life Span for LoRa IoT Multisensor Node for Precision Farming Application

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, evaluation of energy consumption and battery life span for a long-range (LoRa) Internet of Things (IoT) multisensor node for precision farming application is presented. The energy consumption model consists of analytical expressions for the determination of the average current drawn per cycle, the energy consumed per cycle, and the battery life span. The case study multisensor node has five sensors for capturing data on the temperature, relative humidity, CO2, soil moisture, and light. A program written in Visual Basic for Application (VBA) was used for sample numerical computations for the case study multisensor node operated with bandwidth of 125 KHz, transmitter power of 10 dB, cycle time of 540,000 ms, and spreading factor of 12, 11, 10, 9, 8, and 7. The results show that the average current drawn per cycle increases with increase in the spreading factor, the energy consumed per cycle increases with increase in the spreading factor, while the battery life span decreases with increase in the spreading factor. Furthermore, for the spreading factor of 12, the active states took about 43.89% of the cycle time and consumed 46.76 5% of the total energy per cycle, whereas, the sleep state took 56.11% of the cycle time and consumed about 53.24% of the total energy. In all, the idea presented in this paper is relevant for researchers that are working on modeling the energy consumption in multisensor nodes which are popularly used nowadays in smart system design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pal, D., Joshi, S.: AI, IoT and robotics in smart farming: current applications and future potentials. In: Proceedings of the 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp. 1096–1101. IEEE Xplore, Tamil Nadu (2023) Pal, D., Joshi, S.: AI, IoT and robotics in smart farming: current applications and future potentials. In: Proceedings of the 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp. 1096–1101. IEEE Xplore, Tamil Nadu (2023)
2.
Zurück zum Zitat Javaid, M., Haleem, A., Khan, I.H., Suman, R.: Understanding the potential applications of Artificial Intelligence in agriculture sector. Adv. Agrochem. 2(1), 15–30 (2023)CrossRef Javaid, M., Haleem, A., Khan, I.H., Suman, R.: Understanding the potential applications of Artificial Intelligence in agriculture sector. Adv. Agrochem. 2(1), 15–30 (2023)CrossRef
3.
Zurück zum Zitat Sharma, A., Jain, A., Gupta, P., Chowdary, V.: Machine learning applications for precision agriculture: a comprehensive review. IEEE Access. 9, 4843–4873 (2020)CrossRef Sharma, A., Jain, A., Gupta, P., Chowdary, V.: Machine learning applications for precision agriculture: a comprehensive review. IEEE Access. 9, 4843–4873 (2020)CrossRef
4.
Zurück zum Zitat Monteiro, A., Santos, S., Gonçalves, P.: Precision agriculture for crop and livestock farming – brief review. Animals. 11(8), 2345–2362 (2021)CrossRef Monteiro, A., Santos, S., Gonçalves, P.: Precision agriculture for crop and livestock farming – brief review. Animals. 11(8), 2345–2362 (2021)CrossRef
5.
Zurück zum Zitat Tran, D.V., Nguyen, N.V.: The concept and implementation of precision farming and rice integrated crop management systems for sustainable production in the twenty-first century. Int. Rice Comm. Newslett. 55, 91–102 (2006) Tran, D.V., Nguyen, N.V.: The concept and implementation of precision farming and rice integrated crop management systems for sustainable production in the twenty-first century. Int. Rice Comm. Newslett. 55, 91–102 (2006)
6.
Zurück zum Zitat Aubert, B.A., Schroeder, A., Grimaudo, J.: IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54(1), 510–520 (2012)CrossRef Aubert, B.A., Schroeder, A., Grimaudo, J.: IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54(1), 510–520 (2012)CrossRef
7.
Zurück zum Zitat Poongodi, T., Rathee, A., Indrakumari, R., Suresh, P.: IoT sensing capabilities: sensor deployment and node discovery, wearable sensors, wireless body area network (WBAN), data acquisition. In: Peng, S.L., Pal, S., Huang, L. (eds.) Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Intelligent Systems Reference Library, vol. 174, pp. 127–151. Springer, Cham (2020)CrossRef Poongodi, T., Rathee, A., Indrakumari, R., Suresh, P.: IoT sensing capabilities: sensor deployment and node discovery, wearable sensors, wireless body area network (WBAN), data acquisition. In: Peng, S.L., Pal, S., Huang, L. (eds.) Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Intelligent Systems Reference Library, vol. 174, pp. 127–151. Springer, Cham (2020)CrossRef
8.
Zurück zum Zitat Huan, X., Kim, K.S.: On the practical implementation of propagation delay and clock skew compensated high-precision time synchronization schemes with resource-constrained sensor nodes in multi-hop wireless sensor networks. ArXiv, abs/1905.00554 (2019) Huan, X., Kim, K.S.: On the practical implementation of propagation delay and clock skew compensated high-precision time synchronization schemes with resource-constrained sensor nodes in multi-hop wireless sensor networks. ArXiv, abs/1905.00554 (2019)
9.
Zurück zum Zitat Bellini, B., Becoña, J.P., Pereira, A.S., Vázquez, C., Arnaud, A.: IoT in the agribusiness, a power consumption view. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE, Sapporo (2019) Bellini, B., Becoña, J.P., Pereira, A.S., Vázquez, C., Arnaud, A.: IoT in the agribusiness, a power consumption view. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE, Sapporo (2019)
11.
Zurück zum Zitat Chaudhari, B.S., Zennaro, M., Borkar, S.: LPWAN technologies: emerging application characteristics, requirements, and design considerations. Future Internet MDPI. 12(3), 1–25 (2020) Chaudhari, B.S., Zennaro, M., Borkar, S.: LPWAN technologies: emerging application characteristics, requirements, and design considerations. Future Internet MDPI. 12(3), 1–25 (2020)
12.
Zurück zum Zitat Casals, L., Mir, B., Vidal, R., Gomez, C.: Modeling the energy performance of LoRaWAN. Sensors. 17(10), 2364 (2017)CrossRef Casals, L., Mir, B., Vidal, R., Gomez, C.: Modeling the energy performance of LoRaWAN. Sensors. 17(10), 2364 (2017)CrossRef
14.
Zurück zum Zitat Marinov, M.B., Nikolov, D.N., Ganev, B.T., Djamiykov, T.S.: Smart multisensor node for remote elevator condition monitoring. In: 21st International Symposium on Electrical Apparatus & Technologies (SIELA), pp. 1–4. IEEE Xplore, Bourgas (2020) Marinov, M.B., Nikolov, D.N., Ganev, B.T., Djamiykov, T.S.: Smart multisensor node for remote elevator condition monitoring. In: 21st International Symposium on Electrical Apparatus & Technologies (SIELA), pp. 1–4. IEEE Xplore, Bourgas (2020)
15.
Zurück zum Zitat Kazlauskas, M., Navakauskas, D.: Case study of a multisensor patient network and microservices managed by fog computing. In: 2021 IEEE 9th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), pp. 1–4. IEEE Xplore, Riga (2021) Kazlauskas, M., Navakauskas, D.: Case study of a multisensor patient network and microservices managed by fog computing. In: 2021 IEEE 9th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), pp. 1–4. IEEE Xplore, Riga (2021)
16.
Zurück zum Zitat Pötsch, A., Hammer, F.: Towards end-to-end latency of LoRaWAN: experimental analysis and IIoT applicability. In: 15th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 1–4. IEEE Xplore, Sundsvall (2019) Pötsch, A., Hammer, F.: Towards end-to-end latency of LoRaWAN: experimental analysis and IIoT applicability. In: 15th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 1–4. IEEE Xplore, Sundsvall (2019)
17.
Zurück zum Zitat Fialho, V., Fortes, F.: Battery lifetime estimation for LoRaWAN communications. Int. J. Innov. Technol. Explor. Eng. (IJITEE). 9(11), 306–310 (2020)CrossRef Fialho, V., Fortes, F.: Battery lifetime estimation for LoRaWAN communications. Int. J. Innov. Technol. Explor. Eng. (IJITEE). 9(11), 306–310 (2020)CrossRef
19.
Zurück zum Zitat Mnguni, S., Mudali, P., Abu-Mahfouz, A.M., Adigun, M.: Performance evaluation of spreading factors in LoRa networks. In: Towards New e-Infrastructure and e-Services for Developing Countries: 12th EAI International Conference, AFRICOMM 2020, Ebène City, Mauritius, LNICST, vol. 361, pp. 203–215. Springer (2021)CrossRef Mnguni, S., Mudali, P., Abu-Mahfouz, A.M., Adigun, M.: Performance evaluation of spreading factors in LoRa networks. In: Towards New e-Infrastructure and e-Services for Developing Countries: 12th EAI International Conference, AFRICOMM 2020, Ebène City, Mauritius, LNICST, vol. 361, pp. 203–215. Springer (2021)CrossRef
20.
Zurück zum Zitat Ekanem, K., Ubom, E., Ukommi, U.: Analysis of rain attenuation for satellite communication in Akwa Ibom State, Nigeria. In: 18th International Conference and Exhibition on Power and Telecommunication (ICEPT), pp. 25–34. IEEE Xplore, Abeokuta (2022) Ekanem, K., Ubom, E., Ukommi, U.: Analysis of rain attenuation for satellite communication in Akwa Ibom State, Nigeria. In: 18th International Conference and Exhibition on Power and Telecommunication (ICEPT), pp. 25–34. IEEE Xplore, Abeokuta (2022)
Metadaten
Titel
Evaluation of Energy Consumption and Battery Life Span for LoRa IoT Multisensor Node for Precision Farming Application
verfasst von
Oduoye Israel Olufemi
Ubong Ukommi
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-53935-0_15

Neuer Inhalt