Skip to main content

2024 | OriginalPaper | Buchkapitel

Generative Adversarial Network for Synthetic Image Generation Method: Review, Analysis, and Perspective

verfasst von : Christine Dewi

Erschienen in: Applications of Generative AI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, generative adversarial networks (GANs) have been investigated since 2014, and many algorithmic solutions have been suggested for them. GAN have recently become a popular research topic. Even so, not many studies are deep enough to explain the relationship between the many variations of GAN and how they arise. We aim to provide a survey of different GAN techniques in this work, discussing them from the angles of theory, algorithms, and practical applications. We begin with a comprehensive introduction, architecture, and applications of the most popular GAN algorithms, then we draw parallels and draw distinctions between them. The second part of the study focuses on examining the theoretical issues associated with GANs. In this work, we try to determine the benefits and drawbacks of GANs, as well as the important obstacles that stand in the way of achieving successful implementation of GAN in a variety of application domains. Typical GAN applications are presented, including those in synthetic image processing and computer vision, natural language processing, music, speech, and audio, medicine, and data science. The final section of the research presents the study’s conclusion and some suggestions for further research. Further, highlighting the pros and cons of ongoing studies on the application of aversive learning can help guide future research efforts toward the most fruitful avenues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ahn, G., Choi, B. S., Ko, S., Jo, C., Han, H. S., Lee, M. C., & Ro, D. H. (2023). High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation. Journal of Orthopaedic Research, 41(1), 84–93. https://doi.org/10.1002/jor.25325CrossRef Ahn, G., Choi, B. S., Ko, S., Jo, C., Han, H. S., Lee, M. C., & Ro, D. H. (2023). High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation. Journal of Orthopaedic Research, 41(1), 84–93. https://​doi.​org/​10.​1002/​jor.​25325CrossRef
3.
Zurück zum Zitat Alrashedy, H. H. N., Almansour, A. F., Ibrahim, D. M., & Hammoudeh, M. A. A. (2022). BrainGAN: Brain MRI image generation and classification framework using GAN architectures and CNN models. Sensors 22(11). https://doi.org/10.3390/s22114297. Alrashedy, H. H. N., Almansour, A. F., Ibrahim, D. M., & Hammoudeh, M. A. A. (2022). BrainGAN: Brain MRI image generation and classification framework using GAN architectures and CNN models. Sensors 22(11). https://​doi.​org/​10.​3390/​s22114297.
4.
Zurück zum Zitat Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In 34th international conference on machine learning, ICML 2017, pp. 298–321 Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In 34th international conference on machine learning, ICML 2017, pp. 298–321
5.
Zurück zum Zitat Bau, D., Zhu, J. Y., Strobelt, H., Zhou, B., Tenenbaum, J. B., Freeman, W. T., & Torralba, A. (2019). GaN dissection: Visualizing and understanding generative adversarial networks. In 7th international conference on learning representations, ICLR 2019, pp. 1–18. Bau, D., Zhu, J. Y., Strobelt, H., Zhou, B., Tenenbaum, J. B., Freeman, W. T., & Torralba, A. (2019). GaN dissection: Visualizing and understanding generative adversarial networks. In 7th international conference on learning representations, ICLR 2019, pp. 1–18.
6.
Zurück zum Zitat Bergmann, U., Jetchev, N., & Vollgraf, R. (2017). Learning texture manifolds with the periodic spatial GaN. ArXiv 1. Bergmann, U., Jetchev, N., & Vollgraf, R. (2017). Learning texture manifolds with the periodic spatial GaN. ArXiv 1.
7.
Zurück zum Zitat Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GaN training for high fidelity natural image synthesis. In 7th international conference on learning representations, ICLR 2019. Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GaN training for high fidelity natural image synthesis. In 7th international conference on learning representations, ICLR 2019.
10.
Zurück zum Zitat Chen, R.-C., Dewi, C., Zhang, W.-W., & Liu, J.-M. (2020). Integrating gesture control board and image recognition for gesture recognition based on deep learning. International Journal of Applied Science and Engineering (IJASE), 17(3), 237–248. Chen, R.-C., Dewi, C., Zhang, W.-W., & Liu, J.-M. (2020). Integrating gesture control board and image recognition for gesture recognition based on deep learning. International Journal of Applied Science and Engineering (IJASE), 17(3), 237–248.
11.
Zurück zum Zitat Chen, S. H., Lai, Y. W., Kuo, C.L., Lo, C. Y., Lin, Y. S., Lin, Y. R., Kang, C. H., & Tsai, C. C. (2022). A surface defect detection system for golden diamond pineapple based on cycleGAN and YOLOv4. Journal of King Saud University—Computer and Information Sciences 34(10). https://doi.org/10.1016/j.jksuci.2022.07.018. Chen, S. H., Lai, Y. W., Kuo, C.L., Lo, C. Y., Lin, Y. S., Lin, Y. R., Kang, C. H., & Tsai, C. C. (2022). A surface defect detection system for golden diamond pineapple based on cycleGAN and YOLOv4. Journal of King Saud University—Computer and Information Sciences 34(10). https://​doi.​org/​10.​1016/​j.​jksuci.​2022.​07.​018.
12.
Zurück zum Zitat Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN. Advances in Neural Information Processing Systems. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN. Advances in Neural Information Processing Systems.
14.
Zurück zum Zitat Chowdhury, S. R., Tornberg, L., Halvfordsson, R., Nordh, J., Gustafsson, A. S., Wall, J., Westerberg, M., Wirehed, A., Tilloy, L., Hu, Z., Tan, H., Pan, M., & Sjoberg, J. (2019). Automated augmentation with reinforcement learning and GANs for robust identification of traffic signs using front camera images. In Conference Record—Asilomar Conference on Signals, Systems and Computers. Chowdhury, S. R., Tornberg, L., Halvfordsson, R., Nordh, J., Gustafsson, A. S., Wall, J., Westerberg, M., Wirehed, A., Tilloy, L., Hu, Z., Tan, H., Pan, M., & Sjoberg, J. (2019). Automated augmentation with reinforcement learning and GANs for robust identification of traffic signs using front camera images. In Conference Record—Asilomar Conference on Signals, Systems and Computers.
16.
Zurück zum Zitat Deng, F., Wan, Q., Zeng, Y., Shi, Y., Wu, H., Wu, Y., Xu, W., Mok, G. S. P., Zhang, X., & Hu, Z. (2022). Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network. Quantitative Imaging in Medicine and Surgery 12(5). https://doi.org/10.21037/qims-20-1400. Deng, F., Wan, Q., Zeng, Y., Shi, Y., Wu, H., Wu, Y., Xu, W., Mok, G. S. P., Zhang, X., & Hu, Z. (2022). Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network. Quantitative Imaging in Medicine and Surgery 12(5). https://​doi.​org/​10.​21037/​qims-20-1400.
17.
Zurück zum Zitat Dewi, C., Chen, R.-C., Liu, Y.-T., & Tai, S.-K. (2021). Synthetic data generation using DCGAN for improved traffic sign recognition. Neural Computing and Applications, 33(8), 1–15. Dewi, C., Chen, R.-C., Liu, Y.-T., & Tai, S.-K. (2021). Synthetic data generation using DCGAN for improved traffic sign recognition. Neural Computing and Applications, 33(8), 1–15.
19.
Zurück zum Zitat Dewi, C., Chen, R. C., & Liu, Y. T. (2021). Wasserstein generative adversarial networks for realistic traffic sign image generation. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (vol. 12672, pp. 479–93). LNAI, Springer. Dewi, C., Chen, R. C., & Liu, Y. T. (2021). Wasserstein generative adversarial networks for realistic traffic sign image generation. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (vol. 12672, pp. 479–93). LNAI, Springer.
22.
Zurück zum Zitat Dixe, S., Leite, J., Fonseca, J. C., & Borges, J. (2022). BigGAN evaluation for the generation of vehicle interior images. Procedia Computer Science 204 Dixe, S., Leite, J., Fonseca, J. C., & Borges, J. (2022). BigGAN evaluation for the generation of vehicle interior images. Procedia Computer Science 204
29.
Zurück zum Zitat Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems, pp. 2672–2680. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems, pp. 2672–2680.
31.
Zurück zum Zitat Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, Z. Á., Koshino, S., Sala, E., Nakayama, H., & Satoh, S. (2021). MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinformatics 22. https://doi.org/10.1186/s12859-020-03936-1. Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, Z. Á., Koshino, S., Sala, E., Nakayama, H., & Satoh, S. (2021). MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinformatics 22. https://​doi.​org/​10.​1186/​s12859-020-03936-1.
34.
Zurück zum Zitat Jabbar, A., Li, X., Assam, M., Khan, J. A., Obayya, M., Alkhonaini, M. A., Al-Wesabi, F. N., & Assad, M. (2022). AFD-StackGAN: Automatic mask generation network for face de-occlusion using StackGAN. Sensors 22(5). https://doi.org/10.3390/s22051747. Jabbar, A., Li, X., Assam, M., Khan, J. A., Obayya, M., Alkhonaini, M. A., Al-Wesabi, F. N., & Assad, M. (2022). AFD-StackGAN: Automatic mask generation network for face de-occlusion using StackGAN. Sensors 22(5). https://​doi.​org/​10.​3390/​s22051747.
36.
Zurück zum Zitat Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019–June). Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019–June).
38.
39.
Zurück zum Zitat Lan, L., You, L., Zhang, Z., Fan, Z., Zhao, W., Zeng, N., Chen, Y., Zhou, X. (2020). Generative adversarial networks and its applications in biomedical informatics. Frontiers in Public Health 8. Lan, L., You, L., Zhang, Z., Fan, Z., Zhao, W., Zeng, N., Chen, Y., Zhou, X. (2020). Generative adversarial networks and its applications in biomedical informatics. Frontiers in Public Health 8.
40.
Zurück zum Zitat Lee, S., Kim, J., Lee, G., Hong, J., Bae, J. H., & Lim, K. J. (2021). Prediction of aquatic ecosystem health indices through machine learning models using the wgan-based data augmentation method. Sustainability (Switzerland) 13(18). https://doi.org/10.3390/su131810435. Lee, S., Kim, J., Lee, G., Hong, J., Bae, J. H., & Lim, K. J. (2021). Prediction of aquatic ecosystem health indices through machine learning models using the wgan-based data augmentation method. Sustainability (Switzerland) 13(18). https://​doi.​org/​10.​3390/​su131810435.
41.
Zurück zum Zitat Li, D., Ling, H., Kim, S. W., Kreis, K., Fidler, S., & Torralba, A. (2022). BigDatasetGAN: Synthesizing ImageNet with pixel-wise annotations. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2022-June). Li, D., Ling, H., Kim, S. W., Kreis, K., Fidler, S., & Torralba, A. (2022). BigDatasetGAN: Synthesizing ImageNet with pixel-wise annotations. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2022-June).
42.
48.
Zurück zum Zitat Liu, Yan Ting, Rung Ching Chen, and Christine Dewi. 2021. “Generate Realistic Traffic Sign Image Using Deep Convolutional Generative Adversarial Networks.” in 2021 IEEE Conference on Dependable and Secure Computing, DSC 2021. Liu, Yan Ting, Rung Ching Chen, and Christine Dewi. 2021. “Generate Realistic Traffic Sign Image Using Deep Convolutional Generative Adversarial Networks.” in 2021 IEEE Conference on Dependable and Secure Computing, DSC 2021.
49.
51.
Zurück zum Zitat Mao, Q., Lee, H. Y., Tseng, H. Y., Ma, S., & Yang, M. H. (2019). Mode seeking generative adversarial networks for diverse image synthesis. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019-June, pp. 1429–1437). Mao, Q., Lee, H. Y., Tseng, H. Y., Ma, S., & Yang, M. H. (2019). Mode seeking generative adversarial networks for diverse image synthesis. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019-June, pp. 1429–1437).
53.
Zurück zum Zitat Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. CoRR. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. CoRR.
60.
Zurück zum Zitat Ravuri, S., & Vinyals, O. (2019). Seeing is not necessarily believing: limitations of BigGANs for data augmentation. International Conference on Learning Representations (ICLR). Ravuri, S., & Vinyals, O. (2019). Seeing is not necessarily believing: limitations of BigGANs for data augmentation. International Conference on Learning Representations (ICLR).
61.
Zurück zum Zitat Sabry, E. S., Elagooz, S. S., El-Samie, F. E. A., El-Shafai, W., El-Bahnasawy, N. A., El-Banby, G. M., Algarni, A. D., Soliman, N. F., Ramadan, R. A. (2023). Image retrieval using convolutional autoencoder, InfoGAN, and vision transformer unsupervised models. IEEE Access 11. https://doi.org/10.1109/ACCESS.2023.3241858. Sabry, E. S., Elagooz, S. S., El-Samie, F. E. A., El-Shafai, W., El-Bahnasawy, N. A., El-Banby, G. M., Algarni, A. D., Soliman, N. F., Ramadan, R. A. (2023). Image retrieval using convolutional autoencoder, InfoGAN, and vision transformer unsupervised models. IEEE Access 11. https://​doi.​org/​10.​1109/​ACCESS.​2023.​3241858.
67.
Zurück zum Zitat Sun, D., Yang, K., Shi, Z., & Chen, C. (2018). A new mimicking attack by LSGAN. In Proceedings—international conference on tools with artificial intelligence, ICTAI. Sun, D., Yang, K., Shi, Z., & Chen, C. (2018). A new mimicking attack by LSGAN. In Proceedings—international conference on tools with artificial intelligence, ICTAI.
70.
Zurück zum Zitat Toda, R., Teramoto, A., Tsujimoto, M., Toyama, H., Imaizumi, K., Saito, K., & Fujita, H. (2021). Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability for type classification. International Journal of Computer Assisted Radiology and Surgery 16(2). https://doi.org/10.1007/s11548-021-02308-1. Toda, R., Teramoto, A., Tsujimoto, M., Toyama, H., Imaizumi, K., Saito, K., & Fujita, H. (2021). Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability for type classification. International Journal of Computer Assisted Radiology and Surgery 16(2). https://​doi.​org/​10.​1007/​s11548-021-02308-1.
73.
Zurück zum Zitat Volkhonskiy, D., Nazarov, I., & Burnaev, E. (2019). Steganographic generative adversarial networks. In Proceedings Volume 11433, Twelfth International Conference on Machine Vision (ICMV 2019) (pp. 1–12). Volkhonskiy, D., Nazarov, I., & Burnaev, E. (2019). Steganographic generative adversarial networks. In Proceedings Volume 11433, Twelfth International Conference on Machine Vision (ICMV 2019) (pp. 1–12).
74.
Zurück zum Zitat Wafa, A., & Nasiopoulos, P. (2022). Light field GAN-based view synthesis using full 4D information. In Proceedings—CVMP 2022: 19th ACM SIGGRAPH European conference on visual media production. Wafa, A., & Nasiopoulos, P. (2022). Light field GAN-based view synthesis using full 4D information. In Proceedings—CVMP 2022: 19th ACM SIGGRAPH European conference on visual media production.
78.
Zurück zum Zitat Wang, Q., Zhou, X., Wang, C., Liu, Z., Huang, J., Zhou, Y., Li, C., Zhuang, H., & Cheng, J. Z. (2019). WGAN-based synthetic minority over-sampling technique: Improving semantic fine-grained classification for lung nodules in CT images. IEEE Access 7. https://doi.org/10.1109/ACCESS.2019.2896409. Wang, Q., Zhou, X., Wang, C., Liu, Z., Huang, J., Zhou, Y., Li, C., Zhuang, H., & Cheng, J. Z. (2019). WGAN-based synthetic minority over-sampling technique: Improving semantic fine-grained classification for lung nodules in CT images. IEEE Access 7. https://​doi.​org/​10.​1109/​ACCESS.​2019.​2896409.
79.
Zurück zum Zitat Wei, G., Luo, M., Liu, H., Zhang, D., & Zheng, Q. (2020). Progressive generative adversarial networks with reliable sample identification. Pattern Recognition Letters, pp. 91–98. Wei, G., Luo, M., Liu, H., Zhang, D., & Zheng, Q. (2020). Progressive generative adversarial networks with reliable sample identification. Pattern Recognition Letters, pp. 91–98.
84.
Zurück zum Zitat Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., & Ding, N. (2022). GAN-based anomaly detection: A review. Neurocomputing 493. Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., & Ding, N. (2022). GAN-based anomaly detection: A review. Neurocomputing 493.
89.
90.
Zurück zum Zitat Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative adversarial networks. In 36th international conference on machine learning, ICML 2019 (pp. 12744–12753). Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative adversarial networks. In 36th international conference on machine learning, ICML 2019 (pp. 12744–12753).
97.
Metadaten
Titel
Generative Adversarial Network for Synthetic Image Generation Method: Review, Analysis, and Perspective
verfasst von
Christine Dewi
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46238-2_5

Premium Partner