Skip to main content

2024 | OriginalPaper | Buchkapitel

Generative AI to Understand Complex Ecological Interactions

verfasst von : Hirn Johannes, Sanz Verónica, Verdú Miguel

Erschienen in: Applications of Generative AI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recent use of Generative AI (GenAI) techniques in Ecology has provided insights into predicting species co-occurrence patterns, specifically in water-limited ecosystems where multispecific plant clumps grow sparsely. In particular, these patterns have been employed to elucidate the mechanisms governing the assembly of plant communities in the context of Southeastern Spain. We discuss how the important concepts of transfer learning, and data augmentation take on slightly different meanings in this context, as compared to their usual application in Computer Vision. In particular, using transfer learning, the same models have been successfully applied to other plant communities in another semi-arid region of Spain and of tropical Mexico, opening the door to a specific kind of data augmentation by combining data sets from disparate communities. Beyond that, we also discuss the use of GenAI for synthetic data, and for predictions that can be of practical use when replanting vegetation in degraded environments, with an eye to biodiversity. 

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balamurugan, S. A. A., Chitra, P. K. A., & Geetha, S. (2019). Multi label learning approaches for multi species avifaunal occurrence modelling: A case study of south eastern Tamil Nadu. International Journal of Business Intelligence and Data Mining, 15, 449–477.CrossRef Balamurugan, S. A. A., Chitra, P. K. A., & Geetha, S. (2019). Multi label learning approaches for multi species avifaunal occurrence modelling: A case study of south eastern Tamil Nadu. International Journal of Business Intelligence and Data Mining, 15, 449–477.CrossRef
2.
Zurück zum Zitat Battey, C. J., Coffing, G. C., & Kern, A. D. (2021). Visualizing population structure with variational autoencoders. G3, 11(1), jkaa036. Battey, C. J., Coffing, G. C., & Kern, A. D. (2021). Visualizing population structure with variational autoencoders. G3, 11(1), jkaa036.
4.
Zurück zum Zitat Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science, 325, 1121–1124. Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science, 325, 1121–1124.
5.
Zurück zum Zitat Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, G., & White, A. E. (2022). Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 13, 1640–1660.CrossRef Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, G., & White, A. E. (2022). Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 13, 1640–1660.CrossRef
6.
Zurück zum Zitat Bzdok, D., Altman, N., & Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods, 15, 233–234.CrossRef Bzdok, D., Altman, N., & Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods, 15, 233–234.CrossRef
7.
Zurück zum Zitat Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., & Kinzig, A. P. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67.CrossRef Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., & Kinzig, A. P. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67.CrossRef
9.
Zurück zum Zitat Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.CrossRef Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.CrossRef
10.
Zurück zum Zitat Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution, 10, 1632–1644.CrossRef Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution, 10, 1632–1644.CrossRef
11.
Zurück zum Zitat Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296–299.CrossRef Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296–299.CrossRef
12.
Zurück zum Zitat Frégier, Y., & Gouray, J. B. (2021). Mind2Mind: Transfer learning for GANs. In International Conference on Geometric Science of Information (pp. 851–859). Springer, Cham. Frégier, Y., & Gouray, J. B. (2021). Mind2Mind: Transfer learning for GANs. In International Conference on Geometric Science of Information (pp. 851–859). Springer, Cham.
13.
Zurück zum Zitat Harris, D. J. (2015). Generating realistic assemblages with a joint species distribution model. Methods in Ecology and Evolution, 6, 465–473.CrossRef Harris, D. J. (2015). Generating realistic assemblages with a joint species distribution model. Methods in Ecology and Evolution, 6, 465–473.CrossRef
14.
Zurück zum Zitat Hirn, J., García, J. E., Montesinos-Navarro, A., Sanchez-Martín, R., Sanz, V., & Verdú, M. (2022). A deep generative artificial intelligence system to predict species coexistence patterns. Methods in Ecology and Evolution, 13, 1052–1061.CrossRef Hirn, J., García, J. E., Montesinos-Navarro, A., Sanchez-Martín, R., Sanz, V., & Verdú, M. (2022). A deep generative artificial intelligence system to predict species coexistence patterns. Methods in Ecology and Evolution, 13, 1052–1061.CrossRef
15.
Zurück zum Zitat Iten, R., Metger, T., Wilming, H., Del Rio, L., & Renner, R. (2020). Discovering physical concepts with neural networks. Physical Review Letters, 124, 010508.CrossRef Iten, R., Metger, T., Wilming, H., Del Rio, L., & Renner, R. (2020). Discovering physical concepts with neural networks. Physical Review Letters, 124, 010508.CrossRef
17.
Zurück zum Zitat Montesinos-Navarro, A., Pérez-Clemente, R. M., Sánchez-Martín, R., Gómez-Cadenas, A., & Verdú, M. (2020). Phylogenetic analysis of secondary metabolites in a plant community provides evidence for trade-offs between biotic and abiotic stress tolerance. Evolutionary Ecology, 34, 439–451.CrossRef Montesinos-Navarro, A., Pérez-Clemente, R. M., Sánchez-Martín, R., Gómez-Cadenas, A., & Verdú, M. (2020). Phylogenetic analysis of secondary metabolites in a plant community provides evidence for trade-offs between biotic and abiotic stress tolerance. Evolutionary Ecology, 34, 439–451.CrossRef
18.
Zurück zum Zitat Montoya, D., Rogers, L., & Memmott, J. (2012). Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends in Ecology & Evolution, 27, 666–667.CrossRef Montoya, D., Rogers, L., & Memmott, J. (2012). Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends in Ecology & Evolution, 27, 666–667.CrossRef
19.
Zurück zum Zitat Morales-Castilla, I., Matias, M. G., Gravel, D., & Araújo, M. B. (2015). Inferring biotic interactions from proxies. Trends in Ecology & Evolution, 30, 347–356.CrossRef Morales-Castilla, I., Matias, M. G., Gravel, D., & Araújo, M. B. (2015). Inferring biotic interactions from proxies. Trends in Ecology & Evolution, 30, 347–356.CrossRef
20.
Zurück zum Zitat Navarro-Cano, J. A., Verdú, M., & Goberna, M. (2018). Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of Applied Ecology, 55, 1195–1206.CrossRef Navarro-Cano, J. A., Verdú, M., & Goberna, M. (2018). Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of Applied Ecology, 55, 1195–1206.CrossRef
21.
Zurück zum Zitat Pichler, M., & Hartig, F. (2023). Machine learning and deep learning–a review for ecologists. Methods in Ecology and Evolution, 14, 994–1016.CrossRef Pichler, M., & Hartig, F. (2023). Machine learning and deep learning–a review for ecologists. Methods in Ecology and Evolution, 14, 994–1016.CrossRef
22.
Zurück zum Zitat Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., & Sohl-Dickstein, J. (2017). On the expressive power of deep neural networks. In Proceedings of the 34th International Conference on Machine Learning, PMLR, vol 70, pp 2847–2854. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., & Sohl-Dickstein, J. (2017). On the expressive power of deep neural networks. In Proceedings of the 34th International Conference on Machine Learning, PMLR, vol 70, pp 2847–2854.
24.
Zurück zum Zitat Schöb, C., Armas, C., & Pugnaire, F. I. (2013). Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos, 122, 1371–1379.CrossRef Schöb, C., Armas, C., & Pugnaire, F. I. (2013). Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos, 122, 1371–1379.CrossRef
25.
Zurück zum Zitat Siefert, A., Laughlin, D. C., & Sabatini, F. M. (2023). You shall know a species by the company it keeps: leveraging co-occurrence data to improve ecological prediction. bioRxiv, p. 2023.02. 15.528518. Siefert, A., Laughlin, D. C., & Sabatini, F. M. (2023). You shall know a species by the company it keeps: leveraging co-occurrence data to improve ecological prediction. bioRxiv, p. 2023.02. 15.528518.
26.
Zurück zum Zitat Simmons, B. I., Cirtwill, A. R., Baker, N. J., Wauchope, H. S., Dicks, L. V., Stouffer, D. B., & Sutherland, W. J. (2019). Motifs in bipartite ecological networks: Uncovering indirect interactions. Oikos, 128, 154–170.CrossRef Simmons, B. I., Cirtwill, A. R., Baker, N. J., Wauchope, H. S., Dicks, L. V., Stouffer, D. B., & Sutherland, W. J. (2019). Motifs in bipartite ecological networks: Uncovering indirect interactions. Oikos, 128, 154–170.CrossRef
27.
Zurück zum Zitat Strauss, S. Y. (1991). Indirect effects in community ecology: Their definition, study and importance. Trends in Ecology & Evolution, 6, 206–210.CrossRef Strauss, S. Y. (1991). Indirect effects in community ecology: Their definition, study and importance. Trends in Ecology & Evolution, 6, 206–210.CrossRef
28.
Zurück zum Zitat Strydom, T., Bouskila, S., Banville, F., Barros, C., Caron, D., Farrell, M. J., Fortin, M. J., Hemming, V., Mercier, B., Pollock, L. J., & Runghen, R. (2022.) Food web reconstruction through phylogenetic transfer of low‐rank network representation. Methods in Ecology and Evolution, 13(12), 2838–2849. Strydom, T., Bouskila, S., Banville, F., Barros, C., Caron, D., Farrell, M. J., Fortin, M. J., Hemming, V., Mercier, B., Pollock, L. J., & Runghen, R. (2022.) Food web reconstruction through phylogenetic transfer of low‐rank network representation. Methods in Ecology and Evolution, 13(12), 2838–2849.
29.
Zurück zum Zitat Tang, L., Xue, Y., Chen, D., & Gomes, C. (2018). Multi-entity dependence learning with rich context via conditional variational auto-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). Tang, L., Xue, Y., Chen, D., & Gomes, C. (2018). Multi-entity dependence learning with rich context via conditional variational auto-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).
31.
Zurück zum Zitat van Kleunen, M., Dawson, W., Bossdorf, O., & Fcher. (2014). The more the merrier: Multi-species experiments in ecology. Basic and Applied Ecology, 15, 1–9.CrossRef van Kleunen, M., Dawson, W., Bossdorf, O., & Fcher. (2014). The more the merrier: Multi-species experiments in ecology. Basic and Applied Ecology, 15, 1–9.CrossRef
Metadaten
Titel
Generative AI to Understand Complex Ecological Interactions
verfasst von
Hirn Johannes
Sanz Verónica
Verdú Miguel
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46238-2_15

Premium Partner