Skip to main content

2024 | OriginalPaper | Buchkapitel

Generative Models for Missing Data

verfasst von : Huiming Xie, Fei Xue, Xiao Wang

Erschienen in: Applications of Generative AI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Missing data poses an ubiquitous challenge across a wide range of applications, stemming from a multitude of causes that are both diverse and context-dependent. The prevailing issue is that most advanced data analysis techniques are primarily tailored for complete datasets, thereby underscoring the indispensable need for effective imputation methods. In this chapter, we embark on an extensive exploration of missing data from a statistical perspective, offering a holistic review of its intricate nature. Our investigation encompasses a deep dive into the various mechanisms underlying missing data, shedding light on their ignorability and identifiability-fundamental concepts essential for understanding and addressing this pervasive issue. Moreover, we present a succinct yet comprehensive overview of influential classical imputation methods, showcasing their contributions to the field. Building upon this foundation, we delve into the latest advancements in generative models, a burgeoning area that holds great promise for learning from and imputing missing data. By harnessing the power of generative models, we aim to unlock novel insights and methodologies that can tackle the challenges posed by missing data. Furthermore, we introduce an approach that specifically addresses the critical problem of nonparametric identifiability in nonignorable missing data through the innovative use of generative models. This novel approach aims to overcome the limitations associated with alternative generative models and provides a potential solution to this challenging issue. To enhance the clarity of our proposed method, we supplement our discourse with curated numerical examples that distinguish its effectiveness from other baselines in specific scenarios. Through the exploration, we hope to pave the way for further research and advancements in this critical domain, ultimately leading to more accurate and reliable analyses and interpretations of incomplete datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Li, Y., Miao, W., Shpitser, I., & Tchetgen, E. J. T. (2022). A self-censoring model for multivariate nonignorable nonmonotone missing data. arXiv preprint arXiv:2207.08535. Li, Y., Miao, W., Shpitser, I., & Tchetgen, E. J. T. (2022). A self-censoring model for multivariate nonignorable nonmonotone missing data. arXiv preprint arXiv:​2207.​08535.
2.
Zurück zum Zitat Malinsky, D., Shpitser, I., & Tchetgen Tchetgen, E. J. (2021). Semiparametric inference for nonmonotone missing-not-at-random data: The no self-censoring model. Journal of the American Statistical Association, pp. 1–9. Malinsky, D., Shpitser, I., & Tchetgen Tchetgen, E. J. (2021). Semiparametric inference for nonmonotone missing-not-at-random data: The no self-censoring model. Journal of the American Statistical Association, pp. 1–9.
3.
Zurück zum Zitat Wang, Y., Liang, D., Charlin,L., & Blei, D. M. (2018). The deconfounded recommender: A causal inference approach to recommendation. arXiv preprint arXiv:1808.06581. Wang, Y., Liang, D., Charlin,L., & Blei, D. M. (2018). The deconfounded recommender: A causal inference approach to recommendation. arXiv preprint arXiv:​1808.​06581.
4.
Zurück zum Zitat Marlin, B. M., & Zemel, R. S. (2009). Collaborative prediction and ranking with non-random missing data. In Proceedings of the third ACM conference on Recommender systems (pp. 5–12). Marlin, B. M., & Zemel, R. S. (2009). Collaborative prediction and ranking with non-random missing data. In Proceedings of the third ACM conference on Recommender systems (pp. 5–12).
5.
Zurück zum Zitat Ghalebikesabi, S., Cornish, R., Holmes, C., & Kelly, L. (2021). Deep generative missingness pattern-set mixture models. In International conference on artificial intelligence and statistics (pp. 3727–3735). PMLR. Ghalebikesabi, S., Cornish, R., Holmes, C., & Kelly, L. (2021). Deep generative missingness pattern-set mixture models. In International conference on artificial intelligence and statistics (pp. 3727–3735). PMLR.
6.
Zurück zum Zitat Xue, F., & Qu, A. (2021). Integrating multisource block-wise missing data in model selection. Journal of the American Statistical Association, 116(536), 1914–1927.MathSciNetCrossRef Xue, F., & Qu, A. (2021). Integrating multisource block-wise missing data in model selection. Journal of the American Statistical Association, 116(536), 1914–1927.MathSciNetCrossRef
7.
Zurück zum Zitat Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1), 1–37.CrossRef Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1), 1–37.CrossRef
9.
Zurück zum Zitat Glynn, R. J., Laird, N. M., & Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. In Drawing inferences from self-selected samples (pp. 115–142). Springer. Glynn, R. J., Laird, N. M., & Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. In Drawing inferences from self-selected samples (pp. 115–142). Springer.
10.
Zurück zum Zitat Little, R. J. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88(421), 125–134. Little, R. J. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88(421), 125–134.
11.
Zurück zum Zitat Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys ( vol. 81). Wiley. Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys ( vol. 81). Wiley.
12.
Zurück zum Zitat Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. BMC Medical Research Methodology, 6, 1–10.CrossRef Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. BMC Medical Research Methodology, 6, 1–10.CrossRef
13.
Zurück zum Zitat Jakobsen, J. C., Gluud, C., Wetterslev, J., & Winkel, P. (2017). When and how should multiple imputation be used for handling missing data in randomised clinical trials-a practical guide with flowcharts. BMC Medical Research Methodology, 17(1), 1–10.CrossRef Jakobsen, J. C., Gluud, C., Wetterslev, J., & Winkel, P. (2017). When and how should multiple imputation be used for handling missing data in randomised clinical trials-a practical guide with flowcharts. BMC Medical Research Methodology, 17(1), 1–10.CrossRef
14.
Zurück zum Zitat Hernández-Lobato, J. M., Houlsby, N., & Ghahramani, Z. (2014). Probabilistic matrix factorization with non-random missing data. In International conference on machine learning (pp. 1512–1520). PMLR. Hernández-Lobato, J. M., Houlsby, N., & Ghahramani, Z. (2014). Probabilistic matrix factorization with non-random missing data. In International conference on machine learning (pp. 1512–1520). PMLR.
15.
Zurück zum Zitat Jannach. D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: An introduction. Cambridge University Press. Jannach. D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: An introduction. Cambridge University Press.
16.
Zurück zum Zitat Ma, C., & Zhang, C. (2021). Identifiable generative models for missing not at random data imputation. Advances in Neural Information Processing Systems, 34, 27645–27658. Ma, C., & Zhang, C. (2021). Identifiable generative models for missing not at random data imputation. Advances in Neural Information Processing Systems, 34, 27645–27658.
17.
Zurück zum Zitat Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association, 72(359), 538–543.MathSciNetCrossRef Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association, 72(359), 538–543.MathSciNetCrossRef
18.
Zurück zum Zitat Robins, J. M. (1997). Non-response models for the analysis of non-monotone non-ignorable missing data. Statistics in Medicine, 16(1), 21–37.CrossRef Robins, J. M. (1997). Non-response models for the analysis of non-monotone non-ignorable missing data. Statistics in Medicine, 16(1), 21–37.CrossRef
19.
Zurück zum Zitat Vansteelandt, S., Goetghebeur, E., Kenward, M. G., & Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica pp. 953–979. Vansteelandt, S., Goetghebeur, E., Kenward, M. G., & Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica pp. 953–979.
20.
Zurück zum Zitat Daniels, M. J., & Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis. Chapman and Hall/CRC. Daniels, M. J., & Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis. Chapman and Hall/CRC.
21.
Zurück zum Zitat Sadinle, M., & Reiter, J. P. (2018). Sequential identification of nonignorable missing data mechanisms. Statistica Sinica, 28(4), 1741–1759.MathSciNet Sadinle, M., & Reiter, J. P. (2018). Sequential identification of nonignorable missing data mechanisms. Statistica Sinica, 28(4), 1741–1759.MathSciNet
22.
Zurück zum Zitat Gill, R. D., Laan, M. J., & Robins, J. M. (1997). Coarsening at random: Characterizations, conjectures, counter-examples. In Proceedings of the first seattle symposium in biostatistics (pp. 255–294). Springer. Gill, R. D., Laan, M. J., & Robins, J. M. (1997). Coarsening at random: Characterizations, conjectures, counter-examples. In Proceedings of the first seattle symposium in biostatistics (pp. 255–294). Springer.
23.
Zurück zum Zitat Wang, S., Shao, J., & Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statistica Sinica, pp. 1097–1116. Wang, S., Shao, J., & Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statistica Sinica, pp. 1097–1116.
24.
Zurück zum Zitat Miao, W., Ding, P., & Geng, Z. (2016). Identifiability of normal and normal mixture models with nonignorable missing data. Journal of the American Statistical Association, 111(516), 1673–1683.MathSciNetCrossRef Miao, W., Ding, P., & Geng, Z. (2016). Identifiability of normal and normal mixture models with nonignorable missing data. Journal of the American Statistical Association, 111(516), 1673–1683.MathSciNetCrossRef
25.
Zurück zum Zitat Miao, W., & Tchetgen, E. J. T. (2016). On varieties of doubly robust estimators under missingness not at random with a shadow variable. Biometrika, 103(2), 475–482.MathSciNetCrossRef Miao, W., & Tchetgen, E. J. T. (2016). On varieties of doubly robust estimators under missingness not at random with a shadow variable. Biometrika, 103(2), 475–482.MathSciNetCrossRef
26.
Zurück zum Zitat d’Haultfoeuille, X. (2010). A new instrumental method for dealing with endogenous selection. Journal of Econometrics, 154(1), 1–15.MathSciNetCrossRef d’Haultfoeuille, X. (2010). A new instrumental method for dealing with endogenous selection. Journal of Econometrics, 154(1), 1–15.MathSciNetCrossRef
27.
Zurück zum Zitat Liu, L., Miao, W., Sun, B., Robins, J., & Tchetgen, E. T. (2020). Identification and inference for marginal average treatment effect on the treated with an instrumental variable. Statistica Sinica, 30(3), 1517.MathSciNet Liu, L., Miao, W., Sun, B., Robins, J., & Tchetgen, E. T. (2020). Identification and inference for marginal average treatment effect on the treated with an instrumental variable. Statistica Sinica, 30(3), 1517.MathSciNet
28.
Zurück zum Zitat Sun, B., Liu, L., Miao, W., Wirth, K., Robins, J., & Tchetgen, E. J. T. (2018). Semiparametric estimation with data missing not at random using an instrumental variable. Statistica Sinica, 28(4), 1965.MathSciNet Sun, B., Liu, L., Miao, W., Wirth, K., Robins, J., & Tchetgen, E. J. T. (2018). Semiparametric estimation with data missing not at random using an instrumental variable. Statistica Sinica, 28(4), 1965.MathSciNet
29.
Zurück zum Zitat Tchetgen, E. J. T., Wang, L., & Sun, B. (2018). Discrete choice models for nonmonotone nonignorable missing data: Identification and inference. Statistica Sinica, 28(4), 2069.MathSciNet Tchetgen, E. J. T., Wang, L., & Sun, B. (2018). Discrete choice models for nonmonotone nonignorable missing data: Identification and inference. Statistica Sinica, 28(4), 2069.MathSciNet
30.
Zurück zum Zitat Linero, A. R. (2017). Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness. Biometrika, 104(2), 327–341.MathSciNetCrossRef Linero, A. R. (2017). Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness. Biometrika, 104(2), 327–341.MathSciNetCrossRef
31.
Zurück zum Zitat Fay, R. E. (1986). Causal models for patterns of nonresponse. Journal of the American Statistical Association, 81(394), 354–365.CrossRef Fay, R. E. (1986). Causal models for patterns of nonresponse. Journal of the American Statistical Association, 81(394), 354–365.CrossRef
32.
Zurück zum Zitat Ma, W.-Q., Geng, Z., & Hu, Y.-H. (2003). Identification of graphical models for nonignorable nonresponse of binary outcomes in longitudinal studies. Journal of multivariate analysis, 87(1), 24–45.MathSciNetCrossRef Ma, W.-Q., Geng, Z., & Hu, Y.-H. (2003). Identification of graphical models for nonignorable nonresponse of binary outcomes in longitudinal studies. Journal of multivariate analysis, 87(1), 24–45.MathSciNetCrossRef
33.
Zurück zum Zitat Mohan, K., & Pearl, J. (2021). Graphical models for processing missing data. Journal of the American Statistical Association, 116(534), 1023–1037.MathSciNetCrossRef Mohan, K., & Pearl, J. (2021). Graphical models for processing missing data. Journal of the American Statistical Association, 116(534), 1023–1037.MathSciNetCrossRef
34.
Zurück zum Zitat Nabi, R., Bhattacharya, R.., & Shpitser, I. (2020). Full law identification in graphical models of missing data: Completeness results. In International conference on machine learning (pp. 7153–7163). PMLR. Nabi, R., Bhattacharya, R.., & Shpitser, I. (2020). Full law identification in graphical models of missing data: Completeness results. In International conference on machine learning (pp. 7153–7163). PMLR.
35.
Zurück zum Zitat Shpitser, I. (2016). Consistent estimation of functions of data missing non-monotonically and not at random. Advances in Neural Information Processing Systems, 29. Shpitser, I. (2016). Consistent estimation of functions of data missing non-monotonically and not at random. Advances in Neural Information Processing Systems, 29.
36.
Zurück zum Zitat Sadinle, M., & Reiter, J. P. (2017). Itemwise conditionally independent nonresponse modelling for incomplete multivariate data. Biometrika, 104(1), 207–220.MathSciNet Sadinle, M., & Reiter, J. P. (2017). Itemwise conditionally independent nonresponse modelling for incomplete multivariate data. Biometrika, 104(1), 207–220.MathSciNet
37.
Zurück zum Zitat Kim, K.-Y., Kim, B.-J., & Yi, G.-S. (2004). Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics, 5(1), 1–9.CrossRef Kim, K.-Y., Kim, B.-J., & Yi, G.-S. (2004). Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics, 5(1), 1–9.CrossRef
38.
Zurück zum Zitat Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118.CrossRef Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118.CrossRef
39.
Zurück zum Zitat Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., & Altman, R. B. (2001). Missing value estimation methods for dna microarrays. Bioinformatics, 17(6), 520–525.CrossRef Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., & Altman, R. B. (2001). Missing value estimation methods for dna microarrays. Bioinformatics, 17(6), 520–525.CrossRef
40.
Zurück zum Zitat Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate imputation by chained equations in r. Journal of Statistical Software, 45, 1–67.CrossRef Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate imputation by chained equations in r. Journal of Statistical Software, 45, 1–67.CrossRef
41.
Zurück zum Zitat Van Buuren, S. (2018). Flexible imputation of missing data. CRC Press. Van Buuren, S. (2018). Flexible imputation of missing data. CRC Press.
42.
Zurück zum Zitat Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). Wiley. Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). Wiley.
43.
Zurück zum Zitat Allison, P. D. (2001). Missing data. Sage Publications. Allison, P. D. (2001). Missing data. Sage Publications.
44.
Zurück zum Zitat Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American statistical Association, 91(434), 473–489.CrossRef Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American statistical Association, 91(434), 473–489.CrossRef
45.
Zurück zum Zitat Audigier, V., Husson, F., & Josse, J. (2016). Multiple imputation for continuous variables using a Bayesian principal component analysis. Journal of Statistical Computation and Simulation, 86(11), 2140–2156.MathSciNetCrossRef Audigier, V., Husson, F., & Josse, J. (2016). Multiple imputation for continuous variables using a Bayesian principal component analysis. Journal of Statistical Computation and Simulation, 86(11), 2140–2156.MathSciNetCrossRef
46.
Zurück zum Zitat Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC Press. Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC Press.
47.
Zurück zum Zitat Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., & Joachims, T. (2016). Recommendations as treatments: Debiasing learning and evaluation. In International conference on machine learning (pp. 1670–1679). PMLR. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., & Joachims, T. (2016). Recommendations as treatments: Debiasing learning and evaluation. In International conference on machine learning (pp. 1670–1679). PMLR.
48.
Zurück zum Zitat Wang, Y., & Blei, D. M. (2019). The blessings of multiple causes. Journal of the American Statistical Association, 114(528), 1574–1596.MathSciNetCrossRef Wang, Y., & Blei, D. M. (2019). The blessings of multiple causes. Journal of the American Statistical Association, 114(528), 1574–1596.MathSciNetCrossRef
49.
Zurück zum Zitat Wang, Y., Liang, D., Charlin, L., & Blei, D. M. (2020). Causal inference for recommender systems. In Fourteenth ACM conference on recommender systems (pp. 426–431). Wang, Y., Liang, D., Charlin, L., & Blei, D. M. (2020). Causal inference for recommender systems. In Fourteenth ACM conference on recommender systems (pp. 426–431).
50.
Zurück zum Zitat Wang, X., Zhang, R., Sun, Y., & Qi, J. (2019). Doubly robust joint learning for recommendation on data missing not at random. In International conference on machine learning (pp. 6638–6647). PMLR. Wang, X., Zhang, R., Sun, Y., & Qi, J. (2019). Doubly robust joint learning for recommendation on data missing not at random. In International conference on machine learning (pp. 6638–6647). PMLR.
51.
Zurück zum Zitat Wang, Z., Akande, O., Poulos, J., & Li, F. (2021). Are deep learning models superior for missing data imputation in large surveys? Evidence from an empirical comparison. arXiv preprintarXiv:2103.09316. Wang, Z., Akande, O., Poulos, J., & Li, F. (2021). Are deep learning models superior for missing data imputation in large surveys? Evidence from an empirical comparison. arXiv preprintarXiv:​2103.​09316.
52.
Zurück zum Zitat Yoon, J., Jordon, J., & Schaar,, M. (2018). Gain: Missing data imputation using generative adversarial nets. In International conference on machine learning (pp. 5689–5698). PMLR. Yoon, J., Jordon, J., & Schaar,, M. (2018). Gain: Missing data imputation using generative adversarial nets. In International conference on machine learning (pp. 5689–5698). PMLR.
53.
Zurück zum Zitat Li, S. C.-X., Jiang, B., & Marlin, B. (2019). Misgan: Learning from incomplete data with generative adversarial networks. arXiv preprintarXiv:1902.09599. Li, S. C.-X., Jiang, B., & Marlin, B. (2019). Misgan: Learning from incomplete data with generative adversarial networks. arXiv preprintarXiv:​1902.​09599.
54.
Zurück zum Zitat Richardson, T. W., Wu, W., Lin, L., Xu, B., & Bernal, E. A. (2020). Mcflow: Monte carlo flow models for data imputation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14205–14214). Richardson, T. W., Wu, W., Lin, L., Xu, B., & Bernal, E. A. (2020). Mcflow: Monte carlo flow models for data imputation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14205–14214).
55.
Zurück zum Zitat Nazabal, A., Olmos, P. M., Ghahramani, Z., & Valera, I. (2020). Handling incomplete heterogeneous data using vaes. Pattern Recognition, 107, 107501.CrossRef Nazabal, A., Olmos, P. M., Ghahramani, Z., & Valera, I. (2020). Handling incomplete heterogeneous data using vaes. Pattern Recognition, 107, 107501.CrossRef
56.
Zurück zum Zitat Ma, C., Tschiatschek, S., Palla, K., Hernández-Lobato, J. M., Nowozin, S., & Zhang, C. (2018). Eddi: Efficient dynamic discovery of high-value information with partial vae. arXiv preprintarXiv:1809.11142. Ma, C., Tschiatschek, S., Palla, K., Hernández-Lobato, J. M., Nowozin, S., & Zhang, C. (2018). Eddi: Efficient dynamic discovery of high-value information with partial vae. arXiv preprintarXiv:​1809.​11142.
57.
Zurück zum Zitat Mattei, P.-A., & Frellsen, J. (2019). Miwae: Deep generative modelling and imputation of incomplete data sets. In International conference on machine learning (pp. 4413–4423). PMLR. Mattei, P.-A., & Frellsen, J. (2019). Miwae: Deep generative modelling and imputation of incomplete data sets. In International conference on machine learning (pp. 4413–4423). PMLR.
58.
Zurück zum Zitat Ipsen, N. B., Mattei, P.-A., & Frellsen, J. (2020). not-miwae: Deep generative modelling with missing not at random data. arXiv preprintarXiv:2006.12871. Ipsen, N. B., Mattei, P.-A., & Frellsen, J. (2020). not-miwae: Deep generative modelling with missing not at random data. arXiv preprintarXiv:​2006.​12871.
60.
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.MathSciNetCrossRef Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.MathSciNetCrossRef
61.
Zurück zum Zitat Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214–223). PMLR. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214–223). PMLR.
62.
Zurück zum Zitat Wei, G. C., & Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American statistical Association, 85(411), 699–704.CrossRef Wei, G. C., & Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American statistical Association, 85(411), 699–704.CrossRef
63.
Zurück zum Zitat Neath, R. C., et al. (2013). On convergence properties of the monte carlo em algorithm. Advances in modern statistical theory and applications: a Festschrift in Honor of Morris L. Eaton (pp. 43–62). Neath, R. C., et al. (2013). On convergence properties of the monte carlo em algorithm. Advances in modern statistical theory and applications: a Festschrift in Honor of Morris L. Eaton (pp. 43–62).
64.
Zurück zum Zitat Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652–660). Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652–660).
65.
Zurück zum Zitat Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. Advances in Neural Information Processing Systems 30. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. Advances in Neural Information Processing Systems 30.
67.
Zurück zum Zitat Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press.
68.
Zurück zum Zitat Khemakhem, I., Kingma, D., Monti, R., & Hyvarinen, A. (2020). Variational autoencoders and nonlinear ica: A unifying framework. In International conference on artificial intelligence and statistics (pp. 2207–2217). PMLR. Khemakhem, I., Kingma, D., Monti, R., & Hyvarinen, A. (2020). Variational autoencoders and nonlinear ica: A unifying framework. In International conference on artificial intelligence and statistics (pp. 2207–2217). PMLR.
70.
Zurück zum Zitat Asuncion, A., & Newman, D. (2007). Uci machine learning repository. Asuncion, A., & Newman, D. (2007). Uci machine learning repository.
71.
Zurück zum Zitat Chen, H. Y. (2007). A semiparametric odds ratio model for measuring association. Biometrics, 63(2), 413–421.MathSciNetCrossRef Chen, H. Y. (2007). A semiparametric odds ratio model for measuring association. Biometrics, 63(2), 413–421.MathSciNetCrossRef
72.
Zurück zum Zitat Chen, H. Y. (2010). Compatibility of conditionally specified models. Statistics and Probability Letters, 80(7–8), 670–677.MathSciNetCrossRef Chen, H. Y. (2010). Compatibility of conditionally specified models. Statistics and Probability Letters, 80(7–8), 670–677.MathSciNetCrossRef
Metadaten
Titel
Generative Models for Missing Data
verfasst von
Huiming Xie
Fei Xue
Xiao Wang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46238-2_27

Premium Partner