Skip to main content
Erschienen in: Fire Technology 3/2023

10.07.2022

Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates

verfasst von: Qiang Sun, Hangxin Liu, Maoyong Zhi, Chenxi Zhao, Jingyun Jia, Pengfei Lv, Song Xie, Yuanhua He, Xiantao Chen

Erschienen in: Fire Technology | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a common safety issue, thermal runaway (TR) of lithium-ion batteries (LIBs) may propagate to adjacent batteries and grow into a large-scale fire, in a multi-cell array or pack. A dynamic pressure chamber was developed to investigate the effect of airflow rates on TR propagation among pouch LIBs under the ambient pressures of 95 kPa and 20 kPa. The results indicate that the ununiform heating and asynchronous trigger of TR between two side of battery are occurred when the TR propagated from TR battery with high temperature over 800°C. The TR propagation can be slowed down under low ambient pressure, e.g., propagation time under 20 kPa is 83 s slightly slower than 73 s under 95 kPa with same airflow rate of 60 L/s. As the increase of airflow rate under 20 kPa from 60 L/s to 150 L/s, peak heat release rate and total heat release increase from 6.1 kW to 29 kW, and from 287 kJ to 872 kJ, and TR fire behaviours also are intensified, which can further shorten the TR propagation time from 83 s to 71 s, through heat feedback from TR combustion fire. The release of toxic/flammable or potentially explosive gases, such as 3620 ppm for total hydrocarbons, 0.97% for CO under 20 kPa during TR propagation needs to be paid attentions especially with low airflow rate. Airflow rate under low pressure condition of 20 kPa has a great impact on the TR propagation, and some mitigation measures and protection design about the LIB module used under low pressure environments should be taken.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sripad S, Bills A, Viswanathan V (2021) A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bull 46:435–442CrossRef Sripad S, Bills A, Viswanathan V (2021) A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bull 46:435–442CrossRef
2.
Zurück zum Zitat NTSB (2014) Auxiliary Power Unit Battery Fire. Japan Airlines Boeing, Boston, pp 787–788 NTSB (2014) Auxiliary Power Unit Battery Fire. Japan Airlines Boeing, Boston, pp 787–788
3.
Zurück zum Zitat Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
4.
Zurück zum Zitat Sun L, Wei C, Guo D, Liu J, Zhao Z, Zheng Z, Jin Y (2020) Comparative study on thermal runaway characteristics of lithium iron phosphate battery modules under different overcharge conditions. Fire Technol 56:1555–1574CrossRef Sun L, Wei C, Guo D, Liu J, Zhao Z, Zheng Z, Jin Y (2020) Comparative study on thermal runaway characteristics of lithium iron phosphate battery modules under different overcharge conditions. Fire Technol 56:1555–1574CrossRef
5.
Zurück zum Zitat Federal Aviation Administration (2021) Events with smoke, fire, extreme heat or explosion involving lithium batteries. Federal Aviation Administration, Washington, DC Federal Aviation Administration (2021) Events with smoke, fire, extreme heat or explosion involving lithium batteries. Federal Aviation Administration, Washington, DC
6.
Zurück zum Zitat Niu H, Chen C, Ji D, Li L, Li Z, Liu Y, Huang X (2020) Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol 56:2491–2507CrossRef Niu H, Chen C, Ji D, Li L, Li Z, Liu Y, Huang X (2020) Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol 56:2491–2507CrossRef
7.
Zurück zum Zitat Wang Q, Huang P, Ping P, Du Y, Li K, Sun J (2017) Combustion behavior of lithium iron phosphate battery induced by external heat radiation. J Loss Prev Process Ind 49:961–969CrossRef Wang Q, Huang P, Ping P, Du Y, Li K, Sun J (2017) Combustion behavior of lithium iron phosphate battery induced by external heat radiation. J Loss Prev Process Ind 49:961–969CrossRef
8.
Zurück zum Zitat Feng X, Lu L, Ouyang M, Li J, He X (2016) A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy 115:194–208CrossRef Feng X, Lu L, Ouyang M, Li J, He X (2016) A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy 115:194–208CrossRef
9.
Zurück zum Zitat Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, Prasser S (2015) Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNi Co Mn O2 large format lithium ion battery. Appl Energy 154:74–91CrossRef Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, Prasser S (2015) Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNi Co Mn O2 large format lithium ion battery. Appl Energy 154:74–91CrossRef
10.
Zurück zum Zitat Lamb J, Orendorff CJ, Steele LAM, Spangler SW (2015) Failure propagation in multi-cell lithium ion batteries. J Power Sources 283:517–523CrossRef Lamb J, Orendorff CJ, Steele LAM, Spangler SW (2015) Failure propagation in multi-cell lithium ion batteries. J Power Sources 283:517–523CrossRef
12.
Zurück zum Zitat Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273CrossRef Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273CrossRef
13.
Zurück zum Zitat Ouyang D, Liu J, Chen M, Weng J, Wang J (2018) An experimental study on the thermal failure propagation in lithium-ion battery pack. J Electrochem Soc 165:A2184–A2193CrossRef Ouyang D, Liu J, Chen M, Weng J, Wang J (2018) An experimental study on the thermal failure propagation in lithium-ion battery pack. J Electrochem Soc 165:A2184–A2193CrossRef
14.
Zurück zum Zitat Wang L, Yin S, Xu J (2019) A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset. J Power Sources 413:284–292CrossRef Wang L, Yin S, Xu J (2019) A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset. J Power Sources 413:284–292CrossRef
15.
Zurück zum Zitat Said AO, Lee C, Stoliarov SI, Marshall AW (2019) Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Appl Energy 248:415–428CrossRef Said AO, Lee C, Stoliarov SI, Marshall AW (2019) Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Appl Energy 248:415–428CrossRef
16.
Zurück zum Zitat Huang Z, Liu J, Zhai H, Wang Q (2021) Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy 233:121103CrossRef Huang Z, Liu J, Zhai H, Wang Q (2021) Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy 233:121103CrossRef
17.
Zurück zum Zitat Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S (2017) Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources 340:51–59CrossRef Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S (2017) Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources 340:51–59CrossRef
18.
Zurück zum Zitat Gao S, Feng X, Lu L, Kamyab N, Du J, Coman P, White RE, Ouyang M (2019) An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel. Int J Heat Mass Transf 135:93–103CrossRef Gao S, Feng X, Lu L, Kamyab N, Du J, Coman P, White RE, Ouyang M (2019) An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel. Int J Heat Mass Transf 135:93–103CrossRef
19.
Zurück zum Zitat Börger A, Mertens J, Wenzl H (2019) Thermal runaway and thermal runaway propagation in batteries: what do we talk about? J Energy Storage 24:100649CrossRef Börger A, Mertens J, Wenzl H (2019) Thermal runaway and thermal runaway propagation in batteries: what do we talk about? J Energy Storage 24:100649CrossRef
20.
Zurück zum Zitat Quanyi L, Xiaoying Y, Xu H (2020) Effect of different arrangement on thermal runaway characteristics of 18650 lithium ion batteries under the typical pressure in civil aviation transportation. Fire Technol 56:2509–2523CrossRef Quanyi L, Xiaoying Y, Xu H (2020) Effect of different arrangement on thermal runaway characteristics of 18650 lithium ion batteries under the typical pressure in civil aviation transportation. Fire Technol 56:2509–2523CrossRef
22.
Zurück zum Zitat Chen W, Jiang J, Wen J (2020) Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions. J Therm Anal Calorim 146:855–863CrossRef Chen W, Jiang J, Wen J (2020) Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions. J Therm Anal Calorim 146:855–863CrossRef
23.
Zurück zum Zitat Chen M, Liu J, Lin X, Huang Q, Yuen R, Wang J (2016) Combustion characteristics of primary lithium battery at two altitudes. J Therm Anal Calorim 124:865–870CrossRef Chen M, Liu J, Lin X, Huang Q, Yuen R, Wang J (2016) Combustion characteristics of primary lithium battery at two altitudes. J Therm Anal Calorim 124:865–870CrossRef
24.
Zurück zum Zitat Chen M, Liu J, He Y, Yuen R, Wang J (2017) Study of the fire hazards of lithium-ion batteries at different pressures. Appl Therm Eng 125:1061–1074CrossRef Chen M, Liu J, He Y, Yuen R, Wang J (2017) Study of the fire hazards of lithium-ion batteries at different pressures. Appl Therm Eng 125:1061–1074CrossRef
25.
Zurück zum Zitat Chen M, Ouyang D, Weng J, Liu J, Wang J (2019) Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge. Process Saf Environ Prot 130:250–256CrossRef Chen M, Ouyang D, Weng J, Liu J, Wang J (2019) Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge. Process Saf Environ Prot 130:250–256CrossRef
26.
Zurück zum Zitat Fu Y, Lu S, Shi L, Cheng X, Zhang H (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 161:38–45CrossRef Fu Y, Lu S, Shi L, Cheng X, Zhang H (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 161:38–45CrossRef
27.
Zurück zum Zitat Xie S, Ren L, Yang X, Wang H, Sun Q, Chen X, He Y (2020) Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery. J Power Sources 448:1181–1189CrossRef Xie S, Ren L, Yang X, Wang H, Sun Q, Chen X, He Y (2020) Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery. J Power Sources 448:1181–1189CrossRef
28.
Zurück zum Zitat Xie S, Ren LX, Gong YZ, Li MH, Chen XT (2020) Effect of charging/discharging rate on the thermal runaway characteristics of lithium-ion batteries in low pressure. J Electrochem Soc 167:8CrossRef Xie S, Ren LX, Gong YZ, Li MH, Chen XT (2020) Effect of charging/discharging rate on the thermal runaway characteristics of lithium-ion batteries in low pressure. J Electrochem Soc 167:8CrossRef
29.
Zurück zum Zitat Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRef Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRef
30.
Zurück zum Zitat Sun J, Li J, Zhou T, Yang K, Wei S, Tang N, Dang N, Li H, Qiu X, Chen L (2016) Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–319CrossRef Sun J, Li J, Zhou T, Yang K, Wei S, Tang N, Dang N, Li H, Qiu X, Chen L (2016) Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–319CrossRef
31.
Zurück zum Zitat Chow WK, Han SS (2011) Heat release rate calculation in oxygen consumption calorimetry. Appl Therm Eng 31:304–310CrossRef Chow WK, Han SS (2011) Heat release rate calculation in oxygen consumption calorimetry. Appl Therm Eng 31:304–310CrossRef
32.
Zurück zum Zitat Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642CrossRef Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642CrossRef
33.
Zurück zum Zitat Quintiere JG (2021) More on methods to measure the energetics of lithium ion batteries in thermal runaway. Fire Saf J 124:103382CrossRef Quintiere JG (2021) More on methods to measure the energetics of lithium ion batteries in thermal runaway. Fire Saf J 124:103382CrossRef
34.
Zurück zum Zitat Lyon RE, Walters RN (2016) Energetics of lithium ion battery failure. J Hazard Mater 318:164–172CrossRef Lyon RE, Walters RN (2016) Energetics of lithium ion battery failure. J Hazard Mater 318:164–172CrossRef
35.
Zurück zum Zitat Sun Q, Liu H, Zhi M, Chen X, Lv P, He Y (2022) Thermal characteristics of thermal runaway for pouch lithium-ion battery with different state of charges under various ambient pressures. J Power Sources 527:231175CrossRef Sun Q, Liu H, Zhi M, Chen X, Lv P, He Y (2022) Thermal characteristics of thermal runaway for pouch lithium-ion battery with different state of charges under various ambient pressures. J Power Sources 527:231175CrossRef
36.
Zurück zum Zitat Quintiere JG (2020) On methods to measure the energetics of a lithium ion battery in thermal runaway. Fire Saf J 111:102911CrossRef Quintiere JG (2020) On methods to measure the energetics of a lithium ion battery in thermal runaway. Fire Saf J 111:102911CrossRef
Metadaten
Titel
Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates
verfasst von
Qiang Sun
Hangxin Liu
Maoyong Zhi
Chenxi Zhao
Jingyun Jia
Pengfei Lv
Song Xie
Yuanhua He
Xiantao Chen
Publikationsdatum
10.07.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01281-8

Weitere Artikel der Ausgabe 3/2023

Fire Technology 3/2023 Zur Ausgabe