Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Modelling of Nanofiber Formation Processes

verfasst von : Alexander L. Yarin, Filippo Pierini, Eyal Zussman, Marco Lauricella

Erschienen in: Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid flows coupled with electrical phenomena represent a fascinating and highly interdisciplinary scientific field. Recently, a remarkable success of electrospinning in producing polymer nanofibers has led to extensive research aimed at understanding the behavior of viscoelastic jets affected by the applied electric and aerodynamic forces, such as those imposed by the surrounding gas flows. Theoretical models have uncovered various unique aspects of the underlying physics of polymer solutions in these jets, offering valuable insights for experimental platforms. This chapter explores the progress made in the theoretical description and numerical simulations of polymer solution jets in electrospinning. It emphasizes the instability phenomena arising from both electric and hydrodynamic factors, which are pivotal for understanding the flow physics. The chapter also outlines specifications for creating accurate and computationally feasible models. Topics covered include electrohydrodynamic modeling, theories describing jet bending instability, recent advancements in Lagrangian approaches for jet flow description, strategies for dynamic refinement of simulations, and the effects of intense elongational flow on polymer networks. In addition, the present chapter discusses current challenges and future prospects in this field, which encompasses the physics of jet flows, non-trivial material properties, and the development of multiscale techniques for modeling viscoelastic jets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agostinho, L. L. F., Yurteri, C. U., Wartena, J., Brouwer, S. P., Fuchs, E. C., & Marijnissen, J. C. M. (2013). Insulated multineedle system for electrohydrodynamic atomization in the simple-jet mode. Applied Physics Letters, 102, 194103. https://doi.org/10.1063/1.4806977CrossRef Agostinho, L. L. F., Yurteri, C. U., Wartena, J., Brouwer, S. P., Fuchs, E. C., & Marijnissen, J. C. M. (2013). Insulated multineedle system for electrohydrodynamic atomization in the simple-jet mode. Applied Physics Letters, 102, 194103. https://​doi.​org/​10.​1063/​1.​4806977CrossRef
Zurück zum Zitat Barenblatt, G. I. (1994). Scaling phenomena in fluid mechanics. Cambridge University Press. Barenblatt, G. I. (1994). Scaling phenomena in fluid mechanics. Cambridge University Press.
Zurück zum Zitat Battocchio, F., Sutcliffe, M., & Teschner, F. (2017). Fibre behaviour in the spunbonding process. Part II: Modelling fibre dynamics in the diffuser. Proceedings of Institution of Mechanicla Engineerrs, Part C: Journal of Mechanical Engineering Science, 231, 407–417.https://doi.org/10.1177/0954406215616984 Battocchio, F., Sutcliffe, M., & Teschner, F. (2017). Fibre behaviour in the spunbonding process. Part II: Modelling fibre dynamics in the diffuser. Proceedings of Institution of Mechanicla Engineerrs, Part C: Journal of Mechanical Engineering Science, 231, 407–417.https://​doi.​org/​10.​1177/​0954406215616984​
Zurück zum Zitat Billmeyer, F. W. (1984). Textbook of polymer science. Wiley. Billmeyer, F. W. (1984). Textbook of polymer science. Wiley.
Zurück zum Zitat Bird, R. B., Armstrong, R. C., & Hassager, O. (1987) Dynamics of polymeric liquids, vol. 1. New York: Fluid Mechanics, Wiley-Interscience. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987) Dynamics of polymeric liquids, vol. 1. New York: Fluid Mechanics, Wiley-Interscience.
Zurück zum Zitat Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: Povidone, crospovidone and copovidone, Springer Science & Business Media Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: Povidone, crospovidone and copovidone, Springer Science & Business Media
Zurück zum Zitat Carroll, C. P., & Joo, Y. L. (2011). Discretized modeling of electrically driven viscoelastic jets in the initial stage of electrospinning. Journal of Applied Physics, 109, 94315.CrossRef Carroll, C. P., & Joo, Y. L. (2011). Discretized modeling of electrically driven viscoelastic jets in the initial stage of electrospinning. Journal of Applied Physics, 109, 94315.CrossRef
Zurück zum Zitat Chen, C.-H. (2011). Electrohydrodynamic stability. In A. Ramos (Ed.), Electrokinetics and electrohydrodynamics in microsystems. New York: Springer. Chen, C.-H. (2011). Electrohydrodynamic stability. In A. Ramos (Ed.), Electrokinetics and electrohydrodynamics in microsystems. New York: Springer.
Zurück zum Zitat Cooley J. F. (1902). Apparatus for electrically dispersing fluids, 692631. Cooley J. F. (1902). Apparatus for electrically dispersing fluids, 692631.
Zurück zum Zitat de Boor, C. (2001). A practical guide to splines. Springer. de Boor, C. (2001). A practical guide to splines. Springer.
Zurück zum Zitat Durrett, R. (2019). Probability: Theory and examples. Cambridge University Press.CrossRef Durrett, R. (2019). Probability: Theory and examples. Cambridge University Press.CrossRef
Zurück zum Zitat Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). Wiley. Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). Wiley.
Zurück zum Zitat Fitzpatrick, R. (2006). Classical electromagnetism. University of Texas at Austin. Fitzpatrick, R. (2006). Classical electromagnetism. University of Texas at Austin.
Zurück zum Zitat Formhals, A. (1934). Process and apparatus for preparing artificial threads, 1975504. Formhals, A. (1934). Process and apparatus for preparing artificial threads, 1975504.
Zurück zum Zitat Formhals, A. (1939). Method and apparatus for spinning, 2160962. Formhals, A. (1939). Method and apparatus for spinning, 2160962.
Zurück zum Zitat Formhals, A. (1940). Artificial thread and method of producing same. Formhals, A. (1940). Artificial thread and method of producing same.
Zurück zum Zitat Formhals, A. (1943). Production of artificial fibers from fiber forming liquids, 2323025. Formhals, A. (1943). Production of artificial fibers from fiber forming liquids, 2323025.
Zurück zum Zitat Formhals, A. (1944). Method and apparatus for spinning, 2349950. Formhals, A. (1944). Method and apparatus for spinning, 2349950.
Zurück zum Zitat Foss, J. Panton, R., Yarin, A. (2007). Nondimensional representation of the boundary-value problem. In: C. Tropea, A. L. Yarin, & J. F. Foss (Eds.), Springer handbook of experimental fluid mechanics (pp. 33–82). Berlin: Springer. Foss, J. Panton, R., Yarin, A. (2007). Nondimensional representation of the boundary-value problem. In: C. Tropea, A. L. Yarin, & J. F. Foss (Eds.), Springer handbook of experimental fluid mechanics (pp. 33–82). Berlin: Springer.
Zurück zum Zitat Gilbert, W. (1600). De Magnete (P. F. Mottelay, F. Brothers, Trans.). New York: United States. Gilbert, W. (1600). De Magnete (P. F. Mottelay, F. Brothers, Trans.). New York: United States.
Zurück zum Zitat Hansen, C. M. (2007). Hansen solubility parameters: A user’s handbook (2nd ed.). CRC Press.CrossRef Hansen, C. M. (2007). Hansen solubility parameters: A user’s handbook (2nd ed.). CRC Press.CrossRef
Zurück zum Zitat Hildebrand, J. H., & Scott, R. L. (1964). The solubility of nonelectrolytes. Dover Publications. Hildebrand, J. H., & Scott, R. L. (1964). The solubility of nonelectrolytes. Dover Publications.
Zurück zum Zitat Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids, 13, 2201–2220. Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids, 13, 2201–2220.
Zurück zum Zitat Kleinstreuer, C. (2010). Modern fluid dynamics basic: theory and selected applications in macro- and micro-fluidics. Springer.CrossRef Kleinstreuer, C. (2010). Modern fluid dynamics basic: theory and selected applications in macro- and micro-fluidics. Springer.CrossRef
Zurück zum Zitat Kloeden, P., & Platen, E. (1992). Numerical solution of stochastic differential equations. Springer.CrossRef Kloeden, P., & Platen, E. (1992). Numerical solution of stochastic differential equations. Springer.CrossRef
Zurück zum Zitat Kowalewski, T. A., Barral, S., & Kowalczyk, T. (2009). Modeling electrospinning of nanofibers. In IUTAM Symposium on Modelling Nanomaterials and Nanosystems, pp. 279–292. Kowalewski, T. A., Barral, S., & Kowalczyk, T. (2009). Modeling electrospinning of nanofibers. In IUTAM Symposium on Modelling Nanomaterials and Nanosystems, pp. 279–292.
Zurück zum Zitat Lauricella, M., Pontrelli, G., Coluzza, I., Pisignano, D., & Succi, S. (2015). JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning. Computer Physics Communications, 197, 227–238. Lauricella, M., Pontrelli, G., Coluzza, I., Pisignano, D., & Succi, S. (2015). JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning. Computer Physics Communications, 197, 227–238.
Zurück zum Zitat Lauricella, M., Pontrelli, G., Coluzza, I., Pisignano, D., & Succi, S. (2015). Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag, Mechanics Research Communications, 69, 97–102. Lauricella, M., Pontrelli, G., Coluzza, I., Pisignano, D., & Succi, S. (2015). Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag, Mechanics Research Communications, 69, 97–102.
Zurück zum Zitat Levich, W. G. (1962). Physicochemical hydrodynamics. Prentice-Hall. Levich, W. G. (1962). Physicochemical hydrodynamics. Prentice-Hall.
Zurück zum Zitat Malkin, A. Y., & Isayev, A. I. (2022). Rheology: Concepts, methods, and applications. Fourth Edition, Toronto: Chemtec Publishing. Malkin, A. Y., & Isayev, A. I. (2022). Rheology: Concepts, methods, and applications. Fourth Edition, Toronto: Chemtec Publishing.
Zurück zum Zitat Melcher, J. R. (1981). Continuum electromechanics. MIT Press. Melcher, J. R. (1981). Continuum electromechanics. MIT Press.
Zurück zum Zitat Michelson, D. (1990). Electrostatic atomization. CRC Press. Michelson, D. (1990). Electrostatic atomization. CRC Press.
Zurück zum Zitat Monteferrante, M., Succi, S., Pisignano, D., & Lauricella, M. (2022). Simulating polymerization by Boltzmann inversion force field approach and dynamical nonequilibrium reactive molecular dynamics. Polymers, 14, 4529. https://doi.org/10.3390/polym14214529 Monteferrante, M., Succi, S., Pisignano, D., & Lauricella, M. (2022). Simulating polymerization by Boltzmann inversion force field approach and dynamical nonequilibrium reactive molecular dynamics. Polymers, 14, 4529. https://​doi.​org/​10.​3390/​polym14214529
Zurück zum Zitat Morozov, V. N., & Mikheev, A. Y. (2012). Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. Journal of Membrane Science, 403, 110–120.CrossRef Morozov, V. N., & Mikheev, A. Y. (2012). Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. Journal of Membrane Science, 403, 110–120.CrossRef
Zurück zum Zitat Morrison, F. A. (2001). Understanding rheology. Oxford University Press. Morrison, F. A. (2001). Understanding rheology. Oxford University Press.
Zurück zum Zitat Morton, W. J. (1902). Method of dispersing fluids, 705691. Morton, W. J. (1902). Method of dispersing fluids, 705691.
Zurück zum Zitat Panofsky, W. K. H., & Phillips, M. (1962). Classical electricity and magnetism. Dover Publications. Panofsky, W. K. H., & Phillips, M. (1962). Classical electricity and magnetism. Dover Publications.
Zurück zum Zitat Pontrelli, G., Gentili, D., Coluzza, I., Pisignano, D., & Succi, S. (2014). Effects of non-linear rheology on the electrospinning process: A model study. Mechanics Research Communications, 61, 41–46.CrossRef Pontrelli, G., Gentili, D., Coluzza, I., Pisignano, D., & Succi, S. (2014). Effects of non-linear rheology on the electrospinning process: A model study. Mechanics Research Communications, 61, 41–46.CrossRef
Zurück zum Zitat Rao, M. A. (2014). Rheology of fluid, semisolid, and solid foods. Springer.CrossRef Rao, M. A. (2014). Rheology of fluid, semisolid, and solid foods. Springer.CrossRef
Zurück zum Zitat Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87, 4531–4547.CrossRef Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87, 4531–4547.CrossRef
Zurück zum Zitat Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford University Press.CrossRef Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford University Press.CrossRef
Zurück zum Zitat Saville, D. A. (1997). Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 29, 27–64.MathSciNetCrossRef Saville, D. A. (1997). Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 29, 27–64.MathSciNetCrossRef
Zurück zum Zitat Schlichting, H. (1979). Boundary layer theory. McGraw-Hill. Schlichting, H. (1979). Boundary layer theory. McGraw-Hill.
Zurück zum Zitat Sharma, A. (2021). Introduction to computational fluid dynamics. Springer International Publishing. Sharma, A. (2021). Introduction to computational fluid dynamics. Springer International Publishing.
Zurück zum Zitat Song, Z., Chiang, S. W., Chu, X., Du, H., Li, J., Gan, L., Xu, C., Yao, Y., He, Y., Li, B., & Kang, F. (2018). Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 135, 45787. https://doi.org/10.1002/app.45787CrossRef Song, Z., Chiang, S. W., Chu, X., Du, H., Li, J., Gan, L., Xu, C., Yao, Y., He, Y., Li, B., & Kang, F. (2018). Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 135, 45787. https://​doi.​org/​10.​1002/​app.​45787CrossRef
Zurück zum Zitat Taylor, G. (1969). Electrically driven jets. In Proceedings of the royal society of London A: Mathematical, physical and engineering sciences (pp. 453–475). Taylor, G. (1969). Electrically driven jets. In Proceedings of the royal society of London A: Mathematical, physical and engineering sciences (pp. 453–475).
Zurück zum Zitat Tu, J., Yeoh, G. H., & Liu, C. (2012). Computational fluid dynamics: A practical approach. Elsevier. Tu, J., Yeoh, G. H., & Liu, C. (2012). Computational fluid dynamics: A practical approach. Elsevier.
Zurück zum Zitat Tuckerman, M. E. (2009). Statistical mechanics: theory and molecular simulation. Oxford University Press. Tuckerman, M. E. (2009). Statistical mechanics: theory and molecular simulation. Oxford University Press.
Zurück zum Zitat Yarin, A. L. (1993). Free liquid jets and films: Hydrodynamics and rheology. Longman Scientific & Technical. Yarin, A. L. (1993). Free liquid jets and films: Hydrodynamics and rheology. Longman Scientific & Technical.
Zurück zum Zitat Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics, 90, 4836–4846. Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics, 90, 4836–4846.
Zurück zum Zitat Yarin, A. L., Pourdeyhimi, B., Ramakrishna, S. (2014). Fundamentals and applications of micro and nanofibers. Cambridge University Press. Yarin, A. L., Pourdeyhimi, B., Ramakrishna, S. (2014). Fundamentals and applications of micro and nanofibers. Cambridge University Press.
Zurück zum Zitat Yarin, L. P. (2012). The Pi-Theorem: Applications to fluid mechanics and heat and mass transfer. Springer.CrossRef Yarin, L. P. (2012). The Pi-Theorem: Applications to fluid mechanics and heat and mass transfer. Springer.CrossRef
Zurück zum Zitat Yuya, N., Kai, W., Kim, B.-S., & Kim, I. (2010). Morphology controlled electrospun poly(vinyl pyrrolidone) fibers: effects of organic solvent and relative humidity. Journal of Materials Science and Engineering with Advanced Technology, 2, 97–112. Yuya, N., Kai, W., Kim, B.-S., & Kim, I. (2010). Morphology controlled electrospun poly(vinyl pyrrolidone) fibers: effects of organic solvent and relative humidity. Journal of Materials Science and Engineering with Advanced Technology, 2, 97–112.
Zurück zum Zitat Zel’dovich, Y. B. (1992). Selected works of Ya. B. Zel’dovich. In Chemical physics and hydrodynamics, (Vol. 1). Princeton: Princeton University Press Zel’dovich, Y. B. (1992). Selected works of Ya. B. Zel’dovich. In Chemical physics and hydrodynamics, (Vol. 1). Princeton: Princeton University Press
Zurück zum Zitat Ziabicki, A. (1976). Fundamentals of fibre formation. Wiley. Ziabicki, A. (1976). Fundamentals of fibre formation. Wiley.
Zurück zum Zitat Ziabicki, A., & Kawai, H. (Eds.). (1991). High-Speed fiber spinning: Science and engineering aspects. Krieger Publishing. Ziabicki, A., & Kawai, H. (Eds.). (1991). High-Speed fiber spinning: Science and engineering aspects. Krieger Publishing.
Metadaten
Titel
Modelling of Nanofiber Formation Processes
verfasst von
Alexander L. Yarin
Filippo Pierini
Eyal Zussman
Marco Lauricella
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48439-1_4