Skip to main content
Erschienen in: Wireless Personal Communications 4/2024

18.05.2024

Optimization of Quality of Service in 5G Cellular Network by Focusing on Interference Management

verfasst von: Muhammad Ayaz, Altaf Hussain, Tariq Hussain, Iqtidar Ali

Erschienen in: Wireless Personal Communications | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years the increase of mobile devices and users of the internet has led to an increase in the burden on the network, low connectivity, low bandwidth, and less throughput. With many advantages of the 5G cellular network, this network suffers from signal interference which causes a massive problem for the network. There are many challenges in the cellular network related to energy consumption, and one of the leading and critical issues in 5G is interference management. There is poor voice quality during indoor communication, so interference management provides Quality of Service (QoS) to improve this communication. In indoor communication, there is low power compared to outdoor communication because there are many users, and due to users, there are low data rates and overhead on the base station. From this viewpoint, modulation schema and coding schemes achieve better channel conditions, a significant convergence area, and better QoS. This research proposes a scheme named multiple input multiple output (MIMO) technology for interference management in a 5G network. The evaluation of this scheme with a relay strategy has also been carried out to avoid interference and enhance the strength of the propagated signal. The simulation has revealed the performance of the proposed interference management scheme with a relay strategy based on performance evaluation parameters such as end-to-end delay, throughput, path loss, and energy consumption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pandya, K. (2015). Comparative study on wireless mobile technology: 1G, 2G, 3G, 4G, and 5G. IJRTER, 1, 24–27. Pandya, K. (2015). Comparative study on wireless mobile technology: 1G, 2G, 3G, 4G, and 5G. IJRTER, 1, 24–27.
2.
Zurück zum Zitat Agarwal, A., & Agarwal, K. (2014). The next generation mobile wireless cellular networks–4G and beyond. American Journal of Electrical and Electronic Engineering, 2, 92–97.CrossRef Agarwal, A., & Agarwal, K. (2014). The next generation mobile wireless cellular networks–4G and beyond. American Journal of Electrical and Electronic Engineering, 2, 92–97.CrossRef
3.
Zurück zum Zitat Visser, H. J., & Vullers, R. J. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101, 1410–1423.CrossRef Visser, H. J., & Vullers, R. J. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101, 1410–1423.CrossRef
4.
Zurück zum Zitat Zhang, X., Jiang, H., Zhang, L., Zhang, C., Wang, Z., & Chen, X. (2009). An energy-efficient ASIC for wireless body sensor networks in medical applications. IEEE transactions on biomedical circuits and systems, 4, 11–18.CrossRef Zhang, X., Jiang, H., Zhang, L., Zhang, C., Wang, Z., & Chen, X. (2009). An energy-efficient ASIC for wireless body sensor networks in medical applications. IEEE transactions on biomedical circuits and systems, 4, 11–18.CrossRef
5.
Zurück zum Zitat Karki, R. S., & Garia, V. B. (2016). Next generations of mobile networks. International Journal of Computer Applications, 975, 8887. Karki, R. S., & Garia, V. B. (2016). Next generations of mobile networks. International Journal of Computer Applications, 975, 8887.
6.
Zurück zum Zitat Rayan, N. L., & Krishna, C. (2014). A survey on mobile wireless networks. International Journal of Scientific and Engineering Research, 68, 2229. Rayan, N. L., & Krishna, C. (2014). A survey on mobile wireless networks. International Journal of Scientific and Engineering Research, 68, 2229.
7.
Zurück zum Zitat Baba, M. I., Nafees, N., Manzoor, I., Naik, K. A., & Ahmed, S. (2018). Evolution of mobile wireless communication systems from 1g to 5g: A comparative analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 4, 1–8. Baba, M. I., Nafees, N., Manzoor, I., Naik, K. A., & Ahmed, S. (2018). Evolution of mobile wireless communication systems from 1g to 5g: A comparative analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 4, 1–8.
8.
Zurück zum Zitat Yadav, R. (2017). Challenges and evolution of next generations wireless communication. In Proceedings of the International MultiConference of Engineers and Computer Scientists. Yadav, R. (2017). Challenges and evolution of next generations wireless communication. In Proceedings of the International MultiConference of Engineers and Computer Scientists.
9.
Zurück zum Zitat Khatouni, A. S., Mellia, M., Marsan, M. A., Alfredsson, S., Karlsson, J., Brunstrom, A. et al., (2017). Speedtest-like measurements in 3g/4g networks: The monroe experience. In 2017 29th International Teletraffic Congress (ITC 29) (pp. 169–177). Khatouni, A. S., Mellia, M., Marsan, M. A., Alfredsson, S., Karlsson, J., Brunstrom, A. et al., (2017). Speedtest-like measurements in 3g/4g networks: The monroe experience. In 2017 29th International Teletraffic Congress (ITC 29) (pp. 169–177).
10.
Zurück zum Zitat Ezhilarasan, E., & Dinakaran, M. (2017). A Review on mobile technologies: 3G, 4G and 5G. In 2017 second international conference on recent trends and challenges in computational models (ICRTCCM) (pp. 369–373). Ezhilarasan, E., & Dinakaran, M. (2017). A Review on mobile technologies: 3G, 4G and 5G. In 2017 second international conference on recent trends and challenges in computational models (ICRTCCM) (pp. 369–373).
11.
Zurück zum Zitat Kim, B. H., & Calin, D. (2017). On the split-tcp performance over real 4g lte and 3g wireless networks. IEEE Communications Magazine, 55, 124–131.CrossRef Kim, B. H., & Calin, D. (2017). On the split-tcp performance over real 4g lte and 3g wireless networks. IEEE Communications Magazine, 55, 124–131.CrossRef
12.
Zurück zum Zitat Gawas, A. U. (2015). An overview on evolution of mobile wireless communication networks: 1G–6G. International Journal on Recent and Innovation Trends in Computing and Communication, 3, 3130–3133. Gawas, A. U. (2015). An overview on evolution of mobile wireless communication networks: 1G–6G. International Journal on Recent and Innovation Trends in Computing and Communication, 3, 3130–3133.
13.
Zurück zum Zitat Tondare, S. M., Panchal, S. D., & Kushnure, D. (2014). Evolutionary steps from 1G to 4.5 G. International Journal of Advanced Research in Computer and Communication Engineering, 3, 6163–6166. Tondare, S. M., Panchal, S. D., & Kushnure, D. (2014). Evolutionary steps from 1G to 4.5 G. International Journal of Advanced Research in Computer and Communication Engineering, 3, 6163–6166.
14.
Zurück zum Zitat Muhammad, S., Saeed, K., Hussain, T., Abbas, A., Khalil, I., Ali, I., et al. (2019). Impact of jelly fish attackonthe performance of DSR routing protocol in MANETs. Journal of Mechanics Continua and Mathamatical Sciences, 14, 132–140. Muhammad, S., Saeed, K., Hussain, T., Abbas, A., Khalil, I., Ali, I., et al. (2019). Impact of jelly fish attackonthe performance of DSR routing protocol in MANETs. Journal of Mechanics Continua and Mathamatical Sciences, 14, 132–140.
15.
Zurück zum Zitat Vincetti, L., Maini, M., Pinotti, E., Larcher, L., Scorcioni, S., Bertacchini, A., et al., (2012). Broadband printed antenna for radiofrequency energy harvesting. In 2012 International Conference on Electromagnetics in Advanced Applications (pp. 814–816). Vincetti, L., Maini, M., Pinotti, E., Larcher, L., Scorcioni, S., Bertacchini, A., et al., (2012). Broadband printed antenna for radiofrequency energy harvesting. In 2012 International Conference on Electromagnetics in Advanced Applications (pp. 814–816).
16.
Zurück zum Zitat Singh, A. (2015). A review of different generations of mobile technology. International Journal of Advanced Research in Computer Engineering and Technology (IJARCET), 4, 3404–3408. Singh, A. (2015). A review of different generations of mobile technology. International Journal of Advanced Research in Computer Engineering and Technology (IJARCET), 4, 3404–3408.
17.
Zurück zum Zitat Mousa, A. M. (2012). Prospective of fifth generation mobile communications. International Journal of Next-Generation Networks (IJNGN), 4, 1–30. Mousa, A. M. (2012). Prospective of fifth generation mobile communications. International Journal of Next-Generation Networks (IJNGN), 4, 1–30.
18.
Zurück zum Zitat Mehta, H., Patel, D., Joshi, B., & Modi, H. (2014). 0G to 5G mobile technology: A survey. Journal of Basic and Applied Engineering Research, 1, 56–60. Mehta, H., Patel, D., Joshi, B., & Modi, H. (2014). 0G to 5G mobile technology: A survey. Journal of Basic and Applied Engineering Research, 1, 56–60.
19.
Zurück zum Zitat Kaur, G. P., Birla, J., & Ahlawat, J. (2011). Generations of wireless technology. IJCSMS International Journal of Computer Science and Management Studies, 11, 176–180. Kaur, G. P., Birla, J., & Ahlawat, J. (2011). Generations of wireless technology. IJCSMS International Journal of Computer Science and Management Studies, 11, 176–180.
20.
Zurück zum Zitat Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation & Measurement Magazine, 18, 11–21.CrossRef Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation & Measurement Magazine, 18, 11–21.CrossRef
21.
Zurück zum Zitat Azeem, S. A., & Sharma, S. K. (2017). Wireless cellular technologies and convergence. International Journal on Recent and Innovation Trends in Computing and Communication, 5, 766–772. Azeem, S. A., & Sharma, S. K. (2017). Wireless cellular technologies and convergence. International Journal on Recent and Innovation Trends in Computing and Communication, 5, 766–772.
22.
Zurück zum Zitat Ali, I., Hussain, T., Khan, K., Iqbal, A., & Perviz, F. (2020). The impact of IEEE 802.11 contention window on the performance of transmission control protocol in mobile Ad-Hoc network. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9, 29.CrossRef Ali, I., Hussain, T., Khan, K., Iqbal, A., & Perviz, F. (2020). The impact of IEEE 802.11 contention window on the performance of transmission control protocol in mobile Ad-Hoc network. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9, 29.CrossRef
23.
Zurück zum Zitat Patil, C., Karhe, R., & Aher, M. (2012). Review on generations in mobile cellular technology. International Journal of Emerging Technology and Advanced Engineering, 2, 901–912. Patil, C., Karhe, R., & Aher, M. (2012). Review on generations in mobile cellular technology. International Journal of Emerging Technology and Advanced Engineering, 2, 901–912.
24.
Zurück zum Zitat Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60, 4808–4818.MathSciNetCrossRef Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60, 4808–4818.MathSciNetCrossRef
25.
Zurück zum Zitat Hussain, A., Hussain, T., Ali, I., & Khan, M. R. (2020). Impact of sparse and dense deployment of nodes under different propagation models in manets. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9, 61–84.CrossRef Hussain, A., Hussain, T., Ali, I., & Khan, M. R. (2020). Impact of sparse and dense deployment of nodes under different propagation models in manets. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9, 61–84.CrossRef
26.
Zurück zum Zitat Gu, Y., & Aissa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14, 6425–6434.CrossRef Gu, Y., & Aissa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14, 6425–6434.CrossRef
27.
Zurück zum Zitat Bhattacharyya, D., Kim, T.-H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10, 10506–10523.CrossRef Bhattacharyya, D., Kim, T.-H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10, 10506–10523.CrossRef
28.
Zurück zum Zitat Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya, R. (2017). DDoS attacks in cloud computing: Issues, taxonomy, and future directions. Computer Communications, 107, 30–48.CrossRef Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya, R. (2017). DDoS attacks in cloud computing: Issues, taxonomy, and future directions. Computer Communications, 107, 30–48.CrossRef
29.
Zurück zum Zitat Pereira, V., & Sousa, T. (2004). Evolution of Mobile Communications: From 1G to 4G. Department of Informatics Engineering of the University of Coimbra. Pereira, V., & Sousa, T. (2004). Evolution of Mobile Communications: From 1G to 4G. Department of Informatics Engineering of the University of Coimbra.
30.
Zurück zum Zitat Divakar, B. V., Patil, D., & Subramanium, P. (2020). Energy optimization in wireless sensor network using clustering and PSO algorithm. International Research Journal of Engineering and Technology, 7(6), 5267. Divakar, B. V., Patil, D., & Subramanium, P. (2020). Energy optimization in wireless sensor network using clustering and PSO algorithm. International Research Journal of Engineering and Technology, 7(6), 5267.
31.
Zurück zum Zitat Katz, M., & Fitzek, F. H. (2005). On the definition of the fourth generation wireless communications networks: The challenges ahead. In Proceeding of the International Workshop on Convergent Technologies (IWCT 05). Katz, M., & Fitzek, F. H. (2005). On the definition of the fourth generation wireless communications networks: The challenges ahead. In Proceeding of the International Workshop on Convergent Technologies (IWCT 05).
32.
Zurück zum Zitat Hussain, T., Rehman, Z. U., Iqbal, A., Saeed, K., & Ali, I. (2020). Two hop verification for avoiding void hole in underwater wireless sensor network using SM-AHH-VBF and AVH-AHH-VBF routing protocols. Transactions on Emerging Telecommunications Technologies, 31, e3992.CrossRef Hussain, T., Rehman, Z. U., Iqbal, A., Saeed, K., & Ali, I. (2020). Two hop verification for avoiding void hole in underwater wireless sensor network using SM-AHH-VBF and AVH-AHH-VBF routing protocols. Transactions on Emerging Telecommunications Technologies, 31, e3992.CrossRef
33.
Zurück zum Zitat Lu, X. (2016). Sensor networks with wireless energy harvesting. In D. Niyato, E. Hossain, D. I. Kim, V. Bhargava, & L. Shafai (Eds.), Wireless-powered communication networks architectures, protocols, and applications. Cambridge University Press. Lu, X. (2016). Sensor networks with wireless energy harvesting. In D. Niyato, E. Hossain, D. I. Kim, V. Bhargava, & L. Shafai (Eds.), Wireless-powered communication networks architectures, protocols, and applications. Cambridge University Press.
34.
Zurück zum Zitat Mittal, N., & Singh, A. G. (2017). Chaining mobility models for AOMDV and DSDV protocols in FANETs Mittal, N., & Singh, A. G. (2017). Chaining mobility models for AOMDV and DSDV protocols in FANETs
35.
Zurück zum Zitat Agrawal, S., Pandey, S., Singh, J., & Kondekar, P. N. (2013). An efficient RF energy harvester with tuned matching circuit. In M. S. Gaur, M. Zwolinski, V. Laxmi, D. Boolchandani, V. Sing, & A. D. Sing (Eds.), VLSI design and test (pp. 138–145). Springer.CrossRef Agrawal, S., Pandey, S., Singh, J., & Kondekar, P. N. (2013). An efficient RF energy harvester with tuned matching circuit. In M. S. Gaur, M. Zwolinski, V. Laxmi, D. Boolchandani, V. Sing, & A. D. Sing (Eds.), VLSI design and test (pp. 138–145). Springer.CrossRef
36.
Zurück zum Zitat Bhattacharyya, B., & Bhattacharya, S. (2013). Emerging fields in 4G technology, its applications & beyond-An overview. International Journal of Information and Computation Technology, 3, 251–260. Bhattacharyya, B., & Bhattacharya, S. (2013). Emerging fields in 4G technology, its applications & beyond-An overview. International Journal of Information and Computation Technology, 3, 251–260.
37.
Zurück zum Zitat Roberts, M. L., Temple, M. A., Mills, R. F., & Raines, R. A. (2006). Evolution of the air interface of cellular communications systems toward 4G realization. IEEE Communications Surveys & Tutorials, 8, 2–23.CrossRef Roberts, M. L., Temple, M. A., Mills, R. F., & Raines, R. A. (2006). Evolution of the air interface of cellular communications systems toward 4G realization. IEEE Communications Surveys & Tutorials, 8, 2–23.CrossRef
38.
Zurück zum Zitat Fagbohun, O. O. (2014). Comparative studies on 3G, 4G and 5G wireless technology. IOSR Journal of Electronics and Communication Engineering, 9, 88–94.CrossRef Fagbohun, O. O. (2014). Comparative studies on 3G, 4G and 5G wireless technology. IOSR Journal of Electronics and Communication Engineering, 9, 88–94.CrossRef
39.
Zurück zum Zitat Hussain, T., Yang, B., Rahman, H. U., Iqbal, A., Ali, F., & Shah, B. (2022). Improving source location privacy in social internet of things using a hybrid phantom routing technique. Computers & Security, 123, 102917.CrossRef Hussain, T., Yang, B., Rahman, H. U., Iqbal, A., Ali, F., & Shah, B. (2022). Improving source location privacy in social internet of things using a hybrid phantom routing technique. Computers & Security, 123, 102917.CrossRef
40.
Zurück zum Zitat Gill, J., & Singh, S. (2015). Future prospects of wireless generations in mobile communication. Asian Journal of Computer Science and Technology, 4, 18–22.CrossRef Gill, J., & Singh, S. (2015). Future prospects of wireless generations in mobile communication. Asian Journal of Computer Science and Technology, 4, 18–22.CrossRef
41.
Zurück zum Zitat Felita, C., & Suryanegara, M. (2013). 5G key technologies: Identifying innovation opportunity. In 2013 International Conference on QiR (pp 235–238). Felita, C., & Suryanegara, M. (2013). 5G key technologies: Identifying innovation opportunity. In 2013 International Conference on QiR (pp 235–238).
42.
Zurück zum Zitat Kumar, S., Gupta, G., & Singh, K. R. (2015). 5G: Revolution of future communication technology. In 2015 international conference on green computing and internet of things (ICGCIoT) (pp. 143–147). Kumar, S., Gupta, G., & Singh, K. R. (2015). 5G: Revolution of future communication technology. In 2015 international conference on green computing and internet of things (ICGCIoT) (pp. 143–147).
43.
Zurück zum Zitat Majeed, A. (2015). Comparative studies of 3G, 4G & 5G mobile network & data offloading method a survey. In International Journal of Research in Information Technology, Hajvery University Gulberg Lahore. Majeed, A. (2015). Comparative studies of 3G, 4G & 5G mobile network & data offloading method a survey. In International Journal of Research in Information Technology, Hajvery University Gulberg Lahore.
44.
Zurück zum Zitat Chattopadhyay, A. S., & Agarwal, N. (2018). Performance analysis of different routing protocols for mobile Ad-Hoc network. IOSR Journal of Engineering (IOSRJEN), 8, 20–27. Chattopadhyay, A. S., & Agarwal, N. (2018). Performance analysis of different routing protocols for mobile Ad-Hoc network. IOSR Journal of Engineering (IOSRJEN), 8, 20–27.
45.
Zurück zum Zitat Rakesh, K. (2016). A framework of (4G) wireless networks-overview and challenges. Journal of Excellence in Computer Science and Engineering, 2, 1–10.CrossRef Rakesh, K. (2016). A framework of (4G) wireless networks-overview and challenges. Journal of Excellence in Computer Science and Engineering, 2, 1–10.CrossRef
46.
Zurück zum Zitat Pedras, V., Sousa, M., Vieira, P., Queluz, M. P., & Rodrigues, A. (2018). A no-reference user centric QoE model for voice and web browsing based on 3G/4G radio measurements. In 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1–6). Pedras, V., Sousa, M., Vieira, P., Queluz, M. P., & Rodrigues, A. (2018). A no-reference user centric QoE model for voice and web browsing based on 3G/4G radio measurements. In 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1–6).
47.
Zurück zum Zitat Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18, 2446.CrossRef Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18, 2446.CrossRef
48.
Zurück zum Zitat Tan, Y. K., & Panda, S. K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60, 1367–1377.CrossRef Tan, Y. K., & Panda, S. K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60, 1367–1377.CrossRef
49.
Zurück zum Zitat Tan, Y. K., & Panda, S. K. (2010). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58, 4424–4435.CrossRef Tan, Y. K., & Panda, S. K. (2010). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58, 4424–4435.CrossRef
50.
Zurück zum Zitat Sodano, H. A., Simmers, G. E., Dereux, R., & Inman, D. J. (2007). Recharging batteries using energy harvested from thermal gradients. Journal of Intelligent material systems and structures, 18, 3–10.CrossRef Sodano, H. A., Simmers, G. E., Dereux, R., & Inman, D. J. (2007). Recharging batteries using energy harvested from thermal gradients. Journal of Intelligent material systems and structures, 18, 3–10.CrossRef
51.
Zurück zum Zitat Seah, W. K., Eu, Z. A., & Tan, H.-P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges. In 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (pp. 1–5). Seah, W. K., Eu, Z. A., & Tan, H.-P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges. In 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (pp. 1–5).
Metadaten
Titel
Optimization of Quality of Service in 5G Cellular Network by Focusing on Interference Management
verfasst von
Muhammad Ayaz
Altaf Hussain
Tariq Hussain
Iqtidar Ali
Publikationsdatum
18.05.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11139-7

Weitere Artikel der Ausgabe 4/2024

Wireless Personal Communications 4/2024 Zur Ausgabe