Skip to main content

17.05.2024

Reinforcement learning based task offloading of IoT applications in fog computing: algorithms and optimization techniques

verfasst von: Takwa Allaoui, Kaouther Gasmi, Tahar Ezzedine

Erschienen in: Cluster Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, fog computing has become a promising technology that supports computationally intensive and time-sensitive applications, especially when dealing with Internet of Things (IoT) devices with limited processing capability. In this context, offloading can push resource-intensive tasks closer to the end devices at the network edge. This allows user equipment to profit from the fog computing environment by offloading their tasks to fog resources. Thus, computation offloading mechanisms can overcome the resource constraints of devices and enhance the system’s performance by minimizing delay and extending the battery lifetime of devices. In this regard, designing an algorithm to decide which tasks to offload and where to execute them is crucial. Recently, there has been a growing interest in utilizing Reinforcement Learning (RL) and deep reinforcement learning (DRL), to address computation offloading mechanisms in the context of fog computing. This paper reviews the research conducted on Reinforcement learning (RL) and Deep Reinforcement Learning (DRL) based computation offloading mechanisms for IoT applications in the fog environment. We provide a comprehensive and detailed survey, analyzing and classifying the research paper in terms of RL techniques, objectives, architecture, and use cases. Then, in particular, we identify the advantages and weaknesses of each paper. After that, We systematically elaborate on open issues and future research directions that are crucial for the next decade.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use computation offloading and task offloading interchangeably throughout this paper, since both terms are used by different studies.
 
Literatur
1.
Zurück zum Zitat Shafique, K., Khawaja, B.A., Sabir, F., Qazi, S., Mustaqim, M.: Internet of things (iot) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5g-iot scenarios. Ieee Access 8, 23022–23040 (2020)CrossRef Shafique, K., Khawaja, B.A., Sabir, F., Qazi, S., Mustaqim, M.: Internet of things (iot) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5g-iot scenarios. Ieee Access 8, 23022–23040 (2020)CrossRef
2.
Zurück zum Zitat Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRef Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRef
4.
Zurück zum Zitat Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 (2012) Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 (2012)
5.
Zurück zum Zitat Singh, J., Singh, P., Gill, S.S.: Fog computing: a taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021)CrossRef Singh, J., Singh, P., Gill, S.S.: Fog computing: a taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021)CrossRef
6.
Zurück zum Zitat Mahmood, Z., Ramachandran, M.: Fog computing: concepts, principles and related paradigms. In: Mahmood, Z. (ed.) Fog Computing: Concepts, Frameworks and Technologies, pp. 3–21. Springer, New York (2018)CrossRef Mahmood, Z., Ramachandran, M.: Fog computing: concepts, principles and related paradigms. In: Mahmood, Z. (ed.) Fog Computing: Concepts, Frameworks and Technologies, pp. 3–21. Springer, New York (2018)CrossRef
7.
Zurück zum Zitat Jafari, V., Rezvani, M.H.: Joint optimization of energy consumption and time delay in iot-fog-cloud computing environments using nsga-ii metaheuristic algorithm. J. Ambient Intell. Hum. Comput. 14(3), 1675–1698 (2023)CrossRef Jafari, V., Rezvani, M.H.: Joint optimization of energy consumption and time delay in iot-fog-cloud computing environments using nsga-ii metaheuristic algorithm. J. Ambient Intell. Hum. Comput. 14(3), 1675–1698 (2023)CrossRef
8.
Zurück zum Zitat Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)CrossRef Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)CrossRef
9.
Zurück zum Zitat Choudhury, A., Ghose, M., Islam, A., et al.: Machine learning-based computation offloading in multi-access edge computing: a survey. J. Syst. Architect. 148, 103090 (2024)CrossRef Choudhury, A., Ghose, M., Islam, A., et al.: Machine learning-based computation offloading in multi-access edge computing: a survey. J. Syst. Architect. 148, 103090 (2024)CrossRef
10.
Zurück zum Zitat Taheri-abed, S., Eftekhari Moghadam, A.M., Rezvani, M.H.: Machine learning-based computation offloading in edge and fog: a systematic review. Clust. Comput. 26(5), 3113–3144 (2023)CrossRef Taheri-abed, S., Eftekhari Moghadam, A.M., Rezvani, M.H.: Machine learning-based computation offloading in edge and fog: a systematic review. Clust. Comput. 26(5), 3113–3144 (2023)CrossRef
11.
Zurück zum Zitat Hortelano, D., Miguel, I., Barroso, R.J.D., Aguado, J.C., Merayo, N., Ruiz, L., Asensio, A., Masip-Bruin, X., Fernández, P., Lorenzo, R.M., et al.: A comprehensive survey on reinforcement-learning-based computation offloading techniques in edge computing systems. J. Netw. Comput. Appl. 216, 103669 (2023)CrossRef Hortelano, D., Miguel, I., Barroso, R.J.D., Aguado, J.C., Merayo, N., Ruiz, L., Asensio, A., Masip-Bruin, X., Fernández, P., Lorenzo, R.M., et al.: A comprehensive survey on reinforcement-learning-based computation offloading techniques in edge computing systems. J. Netw. Comput. Appl. 216, 103669 (2023)CrossRef
12.
Zurück zum Zitat Jiang, F., Dong, L., Wang, K., Yang, K., Pan, C.: Distributed resource scheduling for large-scale mec systems: a multiagent ensemble deep reinforcement learning with imitation acceleration. IEEE Internet Things J. 9(9), 6597–6610 (2021)CrossRef Jiang, F., Dong, L., Wang, K., Yang, K., Pan, C.: Distributed resource scheduling for large-scale mec systems: a multiagent ensemble deep reinforcement learning with imitation acceleration. IEEE Internet Things J. 9(9), 6597–6610 (2021)CrossRef
13.
Zurück zum Zitat Zhao, Z., Liang, Y., Jin, X.: Handling large-scale action space in deep q network. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 93–96 (2018). IEEE Zhao, Z., Liang, Y., Jin, X.: Handling large-scale action space in deep q network. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 93–96 (2018). IEEE
14.
Zurück zum Zitat Hortelano, D., Miguel, I., Barroso, R.J.D., Aguado, J.C., Merayo, N., Ruiz, L., Asensio, A., Masip-Bruin, X., Fernández, P., Lorenzo, R.M., Abril, E.J.: A comprehensive survey on reinforcement-learning-based computation offloading techniques in edge computing systems. J. Netw. Comput. Appl. 216(C) (2023)https://doi.org/10.1016/j.jnca.2023.103669 Hortelano, D., Miguel, I., Barroso, R.J.D., Aguado, J.C., Merayo, N., Ruiz, L., Asensio, A., Masip-Bruin, X., Fernández, P., Lorenzo, R.M., Abril, E.J.: A comprehensive survey on reinforcement-learning-based computation offloading techniques in edge computing systems. J. Netw. Comput. Appl. 216(C) (2023)https://​doi.​org/​10.​1016/​j.​jnca.​2023.​103669
15.
Zurück zum Zitat Abdulazeez, D.H., Askar, S.K.: Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment: A comprehensive review. IEEE Access (2023) Abdulazeez, D.H., Askar, S.K.: Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment: A comprehensive review. IEEE Access (2023)
16.
Zurück zum Zitat Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., Leivadeas, A., Athanasopoulos, N., Mitton, N., Papavassiliou, S.: Task offloading in edge and cloud computing: A survey on mathematical, artificial intelligence and control theory solutions. Comput. Netw. 195, 108177 (2021). https://doi.org/10.1016/j.comnet.2021.108177CrossRef Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., Leivadeas, A., Athanasopoulos, N., Mitton, N., Papavassiliou, S.: Task offloading in edge and cloud computing: A survey on mathematical, artificial intelligence and control theory solutions. Comput. Netw. 195, 108177 (2021). https://​doi.​org/​10.​1016/​j.​comnet.​2021.​108177CrossRef
17.
Zurück zum Zitat Tran-Dang, H., Bhardwaj, S., Rahim, T., Musaddiq, A., Kim, D.-S.: Reinforcement learning based resource management for fog computing environment: literature review, challenges, and open issues. J. Commun. Netw. 24(1), 83–98 (2022)CrossRef Tran-Dang, H., Bhardwaj, S., Rahim, T., Musaddiq, A., Kim, D.-S.: Reinforcement learning based resource management for fog computing environment: literature review, challenges, and open issues. J. Commun. Netw. 24(1), 83–98 (2022)CrossRef
18.
Zurück zum Zitat Fahimullah, M., Ahvar, S., Trocan, M.: A review of resource management in fog computing: Machine learning perspective. arXiv preprint arXiv:2209.03066 (2022) Fahimullah, M., Ahvar, S., Trocan, M.: A review of resource management in fog computing: Machine learning perspective. arXiv preprint arXiv:​2209.​03066 (2022)
19.
Zurück zum Zitat Iftikhar, S., Gill, S.S., Song, C., Xu, M., Aslanpour, M.S., Toosi, A.N., Du, J., Wu, H., Ghosh, S., Chowdhury, D., Golec, M., Kumar, M., Abdelmoniem, A.M., Cuadrado, F., Varghese, B., Rana, O.,: Artificial Intelligence, Cloud computing, Fog computing, Edge computing, Machine Learning, Internet of Things, Systematic Literature Review, S.D., Uhlig, S.: Ai-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things 21, 100674 (2023) https://doi.org/10.1016/j.iot.2022.100674 Iftikhar, S., Gill, S.S., Song, C., Xu, M., Aslanpour, M.S., Toosi, A.N., Du, J., Wu, H., Ghosh, S., Chowdhury, D., Golec, M., Kumar, M., Abdelmoniem, A.M., Cuadrado, F., Varghese, B., Rana, O.,: Artificial Intelligence, Cloud computing, Fog computing, Edge computing, Machine Learning, Internet of Things, Systematic Literature Review, S.D., Uhlig, S.: Ai-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things 21, 100674 (2023) https://​doi.​org/​10.​1016/​j.​iot.​2022.​100674
20.
Zurück zum Zitat Kumari, N., Yadav, A., Jana, P.K.: Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput. Netw. 214, 109137 (2022)CrossRef Kumari, N., Yadav, A., Jana, P.K.: Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput. Netw. 214, 109137 (2022)CrossRef
21.
Zurück zum Zitat Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020)CrossRef Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020)CrossRef
22.
Zurück zum Zitat Nisha, P.: Fog computing and its real time applications. Int. J. Emerg. Technol. Adv. Eng. 5(6), 266–269 (2015) Nisha, P.: Fog computing and its real time applications. Int. J. Emerg. Technol. Adv. Eng. 5(6), 266–269 (2015)
23.
Zurück zum Zitat Binh, H.T.T., Anh, T.T., Son, D.B., Duc, P.A., Nguyen, B.M.: An evolutionary algorithm for solving task scheduling problem in cloud-fog computing environment. In: Proceedings of the Ninth International Symposium on Information and Communication Technology. SoICT 2018, pp. 397–404. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3287921.3287984 Binh, H.T.T., Anh, T.T., Son, D.B., Duc, P.A., Nguyen, B.M.: An evolutionary algorithm for solving task scheduling problem in cloud-fog computing environment. In: Proceedings of the Ninth International Symposium on Information and Communication Technology. SoICT 2018, pp. 397–404. Association for Computing Machinery, New York, NY, USA (2018). https://​doi.​org/​10.​1145/​3287921.​3287984
25.
Zurück zum Zitat AIT SALAHT, F., Desprez, F., Lebre, A.: An overview of service placement problem in Fog and Edge Computing. Research Report RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON, France (October 2019). https://hal.inria.fr/hal-02313711 AIT SALAHT, F., Desprez, F., Lebre, A.: An overview of service placement problem in Fog and Edge Computing. Research Report RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON, France (October 2019). https://​hal.​inria.​fr/​hal-02313711
26.
Zurück zum Zitat Afzali, M., Mohammad Vali Samani, A., Naji, H.R.: An efficient resource allocation of iot requests in hybrid fog–cloud environment. The Journal of Supercomputing 80(4), 4600–4624 (2024) Afzali, M., Mohammad Vali Samani, A., Naji, H.R.: An efficient resource allocation of iot requests in hybrid fog–cloud environment. The Journal of Supercomputing 80(4), 4600–4624 (2024)
27.
Zurück zum Zitat Laroui, M., Nour, B., Moungla, H., Cherif, M.A., Afifi, H., Guizani, M.: Edge and fog computing for iot: a survey on current research activities & future directions. Comput. Commun. 180, 210–231 (2021)CrossRef Laroui, M., Nour, B., Moungla, H., Cherif, M.A., Afifi, H., Guizani, M.: Edge and fog computing for iot: a survey on current research activities & future directions. Comput. Commun. 180, 210–231 (2021)CrossRef
28.
Zurück zum Zitat Laghari, A.A., Jumani, A.K., Laghari, R.A.: Review and state of art of fog computing. Arch. Comput. Methods Eng. 28(5), 1–13 (2021)CrossRef Laghari, A.A., Jumani, A.K., Laghari, R.A.: Review and state of art of fog computing. Arch. Comput. Methods Eng. 28(5), 1–13 (2021)CrossRef
29.
Zurück zum Zitat Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: A taxonomy, survey and future directions. Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, 103–130 (2018) Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: A taxonomy, survey and future directions. Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, 103–130 (2018)
30.
Zurück zum Zitat Sabireen, H., Neelanarayanan, V.: A review on fog computing: architecture, fog with iot, algorithms and research challenges. Ict Express 7(2), 162–176 (2021)CrossRef Sabireen, H., Neelanarayanan, V.: A review on fog computing: architecture, fog with iot, algorithms and research challenges. Ict Express 7(2), 162–176 (2021)CrossRef
32.
Zurück zum Zitat Islam, A., Debnath, A., Ghose, M., Chakraborty, S.: A survey on task offloading in multi-access edge computing. J. Syst. Architect. 118, 102225 (2021)CrossRef Islam, A., Debnath, A., Ghose, M., Chakraborty, S.: A survey on task offloading in multi-access edge computing. J. Syst. Architect. 118, 102225 (2021)CrossRef
33.
Zurück zum Zitat Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics, vol. 19. Wiley, New York (2004)CrossRef Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics, vol. 19. Wiley, New York (2004)CrossRef
35.
Zurück zum Zitat Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)CrossRef Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)CrossRef
36.
37.
Zurück zum Zitat Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: Platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78 (2015). IEEE Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: Platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78 (2015). IEEE
38.
Zurück zum Zitat Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Internet of Things, pp. 61–75. Elsevier, Amsterdam (2016) Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Internet of Things, pp. 61–75. Elsevier, Amsterdam (2016)
39.
Zurück zum Zitat Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource management approaches in fog computing: a comprehensive review. J. Grid Comput. 18(1), 1–42 (2020)CrossRef Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource management approaches in fog computing: a comprehensive review. J. Grid Comput. 18(1), 1–42 (2020)CrossRef
40.
Zurück zum Zitat Labiod, Y., Amara Korba, A., Ghoualmi, N.: Fog computing-based intrusion detection architecture to protect iot networks. Wirel. Person. Commun. 125(1), 231–259 (2022)CrossRef Labiod, Y., Amara Korba, A., Ghoualmi, N.: Fog computing-based intrusion detection architecture to protect iot networks. Wirel. Person. Commun. 125(1), 231–259 (2022)CrossRef
41.
Zurück zum Zitat Ren, Y., Chen, C., Hu, M., Feng, G., Zhang, X.: Bfdac: A blockchain-based and fog computing-assisted data access control scheme in vehicular social networks. IEEE Internet of Things Journal (2023) Ren, Y., Chen, C., Hu, M., Feng, G., Zhang, X.: Bfdac: A blockchain-based and fog computing-assisted data access control scheme in vehicular social networks. IEEE Internet of Things Journal (2023)
42.
Zurück zum Zitat Yang, H., Guo, Y., Guo, Y.: Blockchain-based cloud-fog collaborative smart home authentication scheme. Comput. Netw. 110240 (2024) Yang, H., Guo, Y., Guo, Y.: Blockchain-based cloud-fog collaborative smart home authentication scheme. Comput. Netw. 110240 (2024)
43.
Zurück zum Zitat Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: A survey. In: Wireless Algorithms, Systems, and Applications: 10th International Conference, WASA 2015, Qufu, China, August 10-12, 2015, Proceedings 10, pp. 685–695 (2015). Springer Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: A survey. In: Wireless Algorithms, Systems, and Applications: 10th International Conference, WASA 2015, Qufu, China, August 10-12, 2015, Proceedings 10, pp. 685–695 (2015). Springer
44.
Zurück zum Zitat Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42 (2015) Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42 (2015)
45.
Zurück zum Zitat Vahid Dastjerdi, A., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: Principles, architectures, and applications. arXiv preprint arXiv:1601.02752 (2016) Vahid Dastjerdi, A., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: Principles, architectures, and applications. arXiv preprint arXiv:​1601.​02752 (2016)
46.
Zurück zum Zitat Taneja, M., Davy, A.: Resource aware placement of iot application modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 1222–1228 (2017). IEEE Taneja, M., Davy, A.: Resource aware placement of iot application modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 1222–1228 (2017). IEEE
47.
Zurück zum Zitat Atlam, H.F., Walters, R.J., Wills, G.B.: Fog computing and the internet of things: a review. Big Data Cogn. Comput. 2(2), 10 (2018)CrossRef Atlam, H.F., Walters, R.J., Wills, G.B.: Fog computing and the internet of things: a review. Big Data Cogn. Comput. 2(2), 10 (2018)CrossRef
48.
Zurück zum Zitat Parveen, S., Singh, P., Arora, D.: Fog computing research opportunities and challenges: A comprehensive survey. In: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), pp. 171–181 (2020). Springer Parveen, S., Singh, P., Arora, D.: Fog computing research opportunities and challenges: A comprehensive survey. In: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), pp. 171–181 (2020). Springer
49.
Zurück zum Zitat Li, W., Jin, S.: Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity. J. Supercomput. 77(11), 12486–12507 (2021)CrossRef Li, W., Jin, S.: Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity. J. Supercomput. 77(11), 12486–12507 (2021)CrossRef
50.
Zurück zum Zitat Liu, Y., Mao, Y., Liu, Z., Ye, F., Yang, Y.: Joint task offloading and resource allocation in heterogeneous edge environments. IEEE Trans. Mob. Comput. (2023) Liu, Y., Mao, Y., Liu, Z., Ye, F., Yang, Y.: Joint task offloading and resource allocation in heterogeneous edge environments. IEEE Trans. Mob. Comput. (2023)
51.
Zurück zum Zitat Mustafa, E., Shuja, J., Zaman, S.K., Jehangiri, A.I., Din, S., Rehman, F., Mustafa, S., Maqsood, T., Khan, A.N.: Joint wireless power transfer and task offloading in mobile edge computing: a survey. Clust. Comput. 25(4), 2429–2448 (2022)CrossRef Mustafa, E., Shuja, J., Zaman, S.K., Jehangiri, A.I., Din, S., Rehman, F., Mustafa, S., Maqsood, T., Khan, A.N.: Joint wireless power transfer and task offloading in mobile edge computing: a survey. Clust. Comput. 25(4), 2429–2448 (2022)CrossRef
52.
Zurück zum Zitat Kumari, N., Yadav, A., Jana, P.K.: Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput. Netw. 214, 109137 (2022)CrossRef Kumari, N., Yadav, A., Jana, P.K.: Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput. Netw. 214, 109137 (2022)CrossRef
53.
Zurück zum Zitat Wang, B., Wang, C., Huang, W., Song, Y., Qin, X.: A survey and taxonomy on task offloading for edge-cloud computing. IEEE Access 8, 186080–186101 (2020)CrossRef Wang, B., Wang, C., Huang, W., Song, Y., Qin, X.: A survey and taxonomy on task offloading for edge-cloud computing. IEEE Access 8, 186080–186101 (2020)CrossRef
54.
Zurück zum Zitat Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., Leivadeas, A., Athanasopoulos, N., Mitton, N., Papavassiliou, S.: Task offloading in edge and cloud computing: a survey on mathematical, artificial intelligence and control theory solutions. Comput. Netw. 195, 108177 (2021)CrossRef Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., Leivadeas, A., Athanasopoulos, N., Mitton, N., Papavassiliou, S.: Task offloading in edge and cloud computing: a survey on mathematical, artificial intelligence and control theory solutions. Comput. Netw. 195, 108177 (2021)CrossRef
55.
Zurück zum Zitat Gasmi, K., Dilek, S., Tosun, S., Ozdemir, S.: A survey on computation offloading and service placement in fog computing-based iot. J. Supercomput. 78(2), 1983–2014 (2022)CrossRef Gasmi, K., Dilek, S., Tosun, S., Ozdemir, S.: A survey on computation offloading and service placement in fog computing-based iot. J. Supercomput. 78(2), 1983–2014 (2022)CrossRef
56.
Zurück zum Zitat Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)MathSciNetCrossRef Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)MathSciNetCrossRef
57.
Zurück zum Zitat Alameddine, H.A., Sharafeddine, S., Sebbah, S., Ayoubi, S., Assi, C.: Dynamic task offloading and scheduling for low-latency iot services in multi-access edge computing. IEEE J. Sel. Areas Commun. 37(3), 668–682 (2019)CrossRef Alameddine, H.A., Sharafeddine, S., Sebbah, S., Ayoubi, S., Assi, C.: Dynamic task offloading and scheduling for low-latency iot services in multi-access edge computing. IEEE J. Sel. Areas Commun. 37(3), 668–682 (2019)CrossRef
58.
Zurück zum Zitat Yang, L., Zhang, H., Li, M., Guo, J., Ji, H.: Mobile edge computing empowered energy efficient task offloading in 5g. IEEE Trans. Veh. Technol. 67(7), 6398–6409 (2018)CrossRef Yang, L., Zhang, H., Li, M., Guo, J., Ji, H.: Mobile edge computing empowered energy efficient task offloading in 5g. IEEE Trans. Veh. Technol. 67(7), 6398–6409 (2018)CrossRef
59.
Zurück zum Zitat Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., et al.: Ai for next generation computing: emerging trends and future directions. Internet Things 19, 100514 (2022)CrossRef Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., et al.: Ai for next generation computing: emerging trends and future directions. Internet Things 19, 100514 (2022)CrossRef
60.
Zurück zum Zitat Tuli, S., Gill, S.S., Garraghan, P., Buyya, R., Casale, G., Jennings, N.: Start: straggler prediction and mitigation for cloud computing environments using encoder lstm networks. IEEE Trans. Serv. Comput. 16(1), 615–627 (2021) Tuli, S., Gill, S.S., Garraghan, P., Buyya, R., Casale, G., Jennings, N.: Start: straggler prediction and mitigation for cloud computing environments using encoder lstm networks. IEEE Trans. Serv. Comput. 16(1), 615–627 (2021)
61.
Zurück zum Zitat Teoh, Y.K., Gill, S.S., Parlikad, A.K.: Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning. IEEE Internet Things J. 10(3), 2087–2094 (2021)CrossRef Teoh, Y.K., Gill, S.S., Parlikad, A.K.: Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning. IEEE Internet Things J. 10(3), 2087–2094 (2021)CrossRef
62.
Zurück zum Zitat Bianchini, R., Fontoura, M., Cortez, E., Bonde, A., Muzio, A., Constantin, A.-M., Moscibroda, T., Magalhaes, G., Bablani, G., Russinovich, M.: Toward ml-centric cloud platforms. Commun. ACM 63(2), 50–59 (2020)CrossRef Bianchini, R., Fontoura, M., Cortez, E., Bonde, A., Muzio, A., Constantin, A.-M., Moscibroda, T., Magalhaes, G., Bablani, G., Russinovich, M.: Toward ml-centric cloud platforms. Commun. ACM 63(2), 50–59 (2020)CrossRef
63.
Zurück zum Zitat Aljanabi, S., Chalechale, A.: Improving iot services using a hybrid fog-cloud offloading. IEEE Access 9, 13775–13788 (2021)CrossRef Aljanabi, S., Chalechale, A.: Improving iot services using a hybrid fog-cloud offloading. IEEE Access 9, 13775–13788 (2021)CrossRef
64.
Zurück zum Zitat Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
65.
66.
Zurück zum Zitat Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (2014) Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (2014)
67.
Zurück zum Zitat Tran-Dang, H., Bhardwaj, S., Rahim, T., Musaddiq, A., Kim, D.-S.: Reinforcement learning based resource management for fog computing environment: literature review, challenges, and open issues. J. Commun. Netw. 24(1), 83–98 (2022)CrossRef Tran-Dang, H., Bhardwaj, S., Rahim, T., Musaddiq, A., Kim, D.-S.: Reinforcement learning based resource management for fog computing environment: literature review, challenges, and open issues. J. Commun. Netw. 24(1), 83–98 (2022)CrossRef
68.
Zurück zum Zitat Van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Reinforcement Learning, pp. 3–42. Springer, New York (2012) Van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Reinforcement Learning, pp. 3–42. Springer, New York (2012)
69.
Zurück zum Zitat Kanervisto, A., Scheller, C., Hautamäki, V.: Action space shaping in deep reinforcement learning. In: 2020 IEEE Conference on Games (CoG), pp. 479–486 (2020). IEEE Kanervisto, A., Scheller, C., Hautamäki, V.: Action space shaping in deep reinforcement learning. In: 2020 IEEE Conference on Games (CoG), pp. 479–486 (2020). IEEE
70.
Zurück zum Zitat Kumar, A., Buckley, T., Lanier, J.B., Wang, Q., Kavelaars, A., Kuzovkin, I.: Offworld gym: open-access physical robotics environment for real-world reinforcement learning benchmark and research. arXiv preprint arXiv:1910.08639 (2019) Kumar, A., Buckley, T., Lanier, J.B., Wang, Q., Kavelaars, A., Kuzovkin, I.: Offworld gym: open-access physical robotics environment for real-world reinforcement learning benchmark and research. arXiv preprint arXiv:​1910.​08639 (2019)
71.
Zurück zum Zitat Chen, X., Liu, G.: Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks. IEEE Internet Things J. 8(13), 10843–10856 (2021)CrossRef Chen, X., Liu, G.: Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks. IEEE Internet Things J. 8(13), 10843–10856 (2021)CrossRef
72.
Zurück zum Zitat Cai, Q., Cui, C., Xiong, Y., Wang, W., Xie, Z., Zhang, M.: A survey on deep reinforcement learning for data processing and analytics. IEEE Trans. Knowl. Data Eng. 35(5), 4446–4465 (2022) Cai, Q., Cui, C., Xiong, Y., Wang, W., Xie, Z., Zhang, M.: A survey on deep reinforcement learning for data processing and analytics. IEEE Trans. Knowl. Data Eng. 35(5), 4446–4465 (2022)
73.
Zurück zum Zitat Garnier, P., Viquerat, J., Rabault, J., Larcher, A., Kuhnle, A., Hachem, E.: A review on deep reinforcement learning for fluid mechanics. Comput. Fluids 225, 104973 (2021)MathSciNetCrossRef Garnier, P., Viquerat, J., Rabault, J., Larcher, A., Kuhnle, A., Hachem, E.: A review on deep reinforcement learning for fluid mechanics. Comput. Fluids 225, 104973 (2021)MathSciNetCrossRef
74.
Zurück zum Zitat Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A.A., Yogamani, S., Pérez, P.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transport. Syst. 23(6), 4909–4926 (2021)CrossRef Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A.A., Yogamani, S., Pérez, P.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transport. Syst. 23(6), 4909–4926 (2021)CrossRef
75.
Zurück zum Zitat Xiong, Z., Zhang, Y., Niyato, D., Deng, R., Wang, P., Wang, L.-C.: Deep reinforcement learning for mobile 5g and beyond: fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 14(2), 44–52 (2019)CrossRef Xiong, Z., Zhang, Y., Niyato, D., Deng, R., Wang, P., Wang, L.-C.: Deep reinforcement learning for mobile 5g and beyond: fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 14(2), 44–52 (2019)CrossRef
76.
Zurück zum Zitat Latif, S., Cuayáhuitl, H., Pervez, F., Shamshad, F., Ali, H.S., Cambria, E.: A survey on deep reinforcement learning for audio-based applications. Artif. Intell. Rev. 56(3), 2193–2240 (2023)CrossRef Latif, S., Cuayáhuitl, H., Pervez, F., Shamshad, F., Ali, H.S., Cambria, E.: A survey on deep reinforcement learning for audio-based applications. Artif. Intell. Rev. 56(3), 2193–2240 (2023)CrossRef
77.
Zurück zum Zitat Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRef Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRef
78.
Zurück zum Zitat Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y.-C., Kim, D.I.: Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun. Surv. Tutor. 21(4), 3133–3174 (2019)CrossRef Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y.-C., Kim, D.I.: Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun. Surv. Tutor. 21(4), 3133–3174 (2019)CrossRef
79.
Zurück zum Zitat Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., Shen, X.: Deep reinforcement learning for autonomous internet of things: model, applications and challenges. IEEE Commun. Surv. Tutor. 22(3), 1722–1760 (2020)CrossRef Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., Shen, X.: Deep reinforcement learning for autonomous internet of things: model, applications and challenges. IEEE Commun. Surv. Tutor. 22(3), 1722–1760 (2020)CrossRef
80.
Zurück zum Zitat Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Deep reinforcement learning for collaborative offloading in heterogeneous edge networks. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 297–303 (2021). IEEE Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Deep reinforcement learning for collaborative offloading in heterogeneous edge networks. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 297–303 (2021). IEEE
81.
Zurück zum Zitat Bai, W., Qian, C.: Deep reinforcement learning for joint offloading and resource allocation in fog computing. In: 2021 IEEE 12th International Conference on Software Engineering and Service Science (ICSESS), pp. 131–134 (2021). IEEE Bai, W., Qian, C.: Deep reinforcement learning for joint offloading and resource allocation in fog computing. In: 2021 IEEE 12th International Conference on Software Engineering and Service Science (ICSESS), pp. 131–134 (2021). IEEE
82.
Zurück zum Zitat Chen, S., Chen, J., Miao, Y., Wang, Q., Zhao, C.: Deep reinforcement learning-based cloud-edge collaborative mobile computation offloading in industrial networks. IEEE Trans. Signal Inf. Process. Netw. 8, 364–375 (2022)MathSciNet Chen, S., Chen, J., Miao, Y., Wang, Q., Zhao, C.: Deep reinforcement learning-based cloud-edge collaborative mobile computation offloading in industrial networks. IEEE Trans. Signal Inf. Process. Netw. 8, 364–375 (2022)MathSciNet
83.
Zurück zum Zitat Vemireddy, S., Rout, R.R.: Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput. Netw. 199, 108463 (2021)CrossRef Vemireddy, S., Rout, R.R.: Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput. Netw. 199, 108463 (2021)CrossRef
84.
Zurück zum Zitat Shahidinejad, A., Ghobaei-Arani, M.: Joint computation offloading and resource provisioning for e dge-cloud computing environment: a machine learning-based approach. Software 50(12), 2212–2230 (2020) Shahidinejad, A., Ghobaei-Arani, M.: Joint computation offloading and resource provisioning for e dge-cloud computing environment: a machine learning-based approach. Software 50(12), 2212–2230 (2020)
85.
Zurück zum Zitat Baek, J., Kaddoum, G.: Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet Things J. 8(2), 1041–1056 (2020)CrossRef Baek, J., Kaddoum, G.: Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet Things J. 8(2), 1041–1056 (2020)CrossRef
86.
Zurück zum Zitat Chen, S., Tang, B., Wang, K.: Twin delayed deep deterministic policy gradient-based intelligent computation offloading for iot. Digit. Commun. Netw. 9(4), 836–845 (2022)CrossRef Chen, S., Tang, B., Wang, K.: Twin delayed deep deterministic policy gradient-based intelligent computation offloading for iot. Digit. Commun. Netw. 9(4), 836–845 (2022)CrossRef
87.
Zurück zum Zitat Huang, L., Bi, S., Zhang, Y.-J.A.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)CrossRef Huang, L., Bi, S., Zhang, Y.-J.A.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)CrossRef
88.
Zurück zum Zitat Cai, J., Fu, H., Liu, Y.: Deep reinforcement learning-based multitask hybrid computing offloading for multiaccess edge computing. Int. J. Intell. Syst. 37(9), 6221–6243 (2022)CrossRef Cai, J., Fu, H., Liu, Y.: Deep reinforcement learning-based multitask hybrid computing offloading for multiaccess edge computing. Int. J. Intell. Syst. 37(9), 6221–6243 (2022)CrossRef
89.
Zurück zum Zitat Jain, V., Kumar, B.: Qos-aware task offloading in fog environment using multi-agent deep reinforcement learning. J. Netw. Syst. Manag. 31(1), 1–32 (2023)MathSciNetCrossRef Jain, V., Kumar, B.: Qos-aware task offloading in fog environment using multi-agent deep reinforcement learning. J. Netw. Syst. Manag. 31(1), 1–32 (2023)MathSciNetCrossRef
90.
Zurück zum Zitat Zhao, J., Kong, M., Li, Q., Sun, X.: Contract-based computing resource management via deep reinforcement learning in vehicular fog computing. IEEE Access 8, 3319–3329 (2019)CrossRef Zhao, J., Kong, M., Li, Q., Sun, X.: Contract-based computing resource management via deep reinforcement learning in vehicular fog computing. IEEE Access 8, 3319–3329 (2019)CrossRef
91.
Zurück zum Zitat Wei, D., Xi, N., Ma, X., Shojafar, M., Kumari, S., Ma, J.: Personalized privacy-aware task offloading for edge-cloud-assisted industrial internet of things in automated manufacturing. IEEE Trans. Ind. Inform. 18(11), 7935–7945 (2022)CrossRef Wei, D., Xi, N., Ma, X., Shojafar, M., Kumari, S., Ma, J.: Personalized privacy-aware task offloading for edge-cloud-assisted industrial internet of things in automated manufacturing. IEEE Trans. Ind. Inform. 18(11), 7935–7945 (2022)CrossRef
92.
Zurück zum Zitat Park, J., Chung, K.: Distributed drl-based computation offloading scheme for improving qoe in edge computing environments. Sensors 23(8), 4166 (2023)CrossRef Park, J., Chung, K.: Distributed drl-based computation offloading scheme for improving qoe in edge computing environments. Sensors 23(8), 4166 (2023)CrossRef
93.
Zurück zum Zitat Fang, C., Hu, Z., Meng, X., Tu, S., Wang, Z., Zeng, D., Ni, W., Guo, S., Han, Z.: Drl-driven joint task offloading and resource allocation for energy-efficient content delivery in cloud-edge cooperation networks. IEEE Trans. Veh. Technol. 72(12), 16195–16207 (2023)CrossRef Fang, C., Hu, Z., Meng, X., Tu, S., Wang, Z., Zeng, D., Ni, W., Guo, S., Han, Z.: Drl-driven joint task offloading and resource allocation for energy-efficient content delivery in cloud-edge cooperation networks. IEEE Trans. Veh. Technol. 72(12), 16195–16207 (2023)CrossRef
94.
Zurück zum Zitat Abeshu, A., Chilamkurti, N.: Deep learning: the frontier for distributed attack detection in fog-to-things computing. IEEE Commun. Mag. 56(2), 169–175 (2018)CrossRef Abeshu, A., Chilamkurti, N.: Deep learning: the frontier for distributed attack detection in fog-to-things computing. IEEE Commun. Mag. 56(2), 169–175 (2018)CrossRef
95.
Zurück zum Zitat Salami, Y., Khajehvand, V., Zeinali, E.: Sos-fci: a secure offloading scheme in fog-cloud-based iot. J. Supercomput. 80(1), 570–600 (2024)CrossRef Salami, Y., Khajehvand, V., Zeinali, E.: Sos-fci: a secure offloading scheme in fog-cloud-based iot. J. Supercomput. 80(1), 570–600 (2024)CrossRef
96.
Zurück zum Zitat Zheng, X., Li, M., Chen, Y., Guo, J., Alam, M., Hu, W.: Blockchain-based secure computation offloading in vehicular networks. IEEE Trans. Intell. Transport. Syst. 22(7), 4073–4087 (2020)CrossRef Zheng, X., Li, M., Chen, Y., Guo, J., Alam, M., Hu, W.: Blockchain-based secure computation offloading in vehicular networks. IEEE Trans. Intell. Transport. Syst. 22(7), 4073–4087 (2020)CrossRef
97.
Zurück zum Zitat Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Privacy-preserved task offloading in mobile blockchain with deep reinforcement learning. IEEE Trans. Netw. Serv. Manag. 17(4), 2536–2549 (2020)CrossRef Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Privacy-preserved task offloading in mobile blockchain with deep reinforcement learning. IEEE Trans. Netw. Serv. Manag. 17(4), 2536–2549 (2020)CrossRef
98.
Zurück zum Zitat Liang, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2018)CrossRef Liang, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2018)CrossRef
99.
Zurück zum Zitat Cheng, F., Zhang, S., Li, Z., Chen, Y., Zhao, N., Yu, F.R., Leung, V.C.: Uav trajectory optimization for data offloading at the edge of multiple cells. IEEE Trans. Veh. Technol. 67(7), 6732–6736 (2018)CrossRef Cheng, F., Zhang, S., Li, Z., Chen, Y., Zhao, N., Yu, F.R., Leung, V.C.: Uav trajectory optimization for data offloading at the edge of multiple cells. IEEE Trans. Veh. Technol. 67(7), 6732–6736 (2018)CrossRef
100.
Zurück zum Zitat Li, Y., Yang, C., Chen, X., Liu, Y.: Mobility and dependency-aware task offloading for intelligent assisted driving in vehicular edge computing networks. Veh. Commun. 45, 100720 (2024) Li, Y., Yang, C., Chen, X., Liu, Y.: Mobility and dependency-aware task offloading for intelligent assisted driving in vehicular edge computing networks. Veh. Commun. 45, 100720 (2024)
101.
Zurück zum Zitat Lai, S., Huang, L., Ning, Q., Zhao, C.: Mobility-aware task offloading in mec with task migration and result caching. Ad Hoc Netw. 156, 103411 (2024)CrossRef Lai, S., Huang, L., Ning, Q., Zhao, C.: Mobility-aware task offloading in mec with task migration and result caching. Ad Hoc Netw. 156, 103411 (2024)CrossRef
103.
Zurück zum Zitat Yang, C., Liu, Y., Chen, X., Zhong, W., Xie, S.: Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7, 26652–26664 (2019)CrossRef Yang, C., Liu, Y., Chen, X., Zhong, W., Xie, S.: Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7, 26652–26664 (2019)CrossRef
Metadaten
Titel
Reinforcement learning based task offloading of IoT applications in fog computing: algorithms and optimization techniques
verfasst von
Takwa Allaoui
Kaouther Gasmi
Tahar Ezzedine
Publikationsdatum
17.05.2024
Verlag
Springer US
Erschienen in
Cluster Computing
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-024-04518-z

Premium Partner