Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Smart Gait Detection and Analysis

verfasst von : Tin-Chih Toly Chen, Yun-Ju Lee

Erschienen in: Smart and Healthy Walking

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter first introduces the basic principles and parameters of gait and then explains the laboratory equipment for gait analysis, including motion capture systems, force plates, and pressure pads. Real-life gait detection equipment is introduced, including video and sensor-based detection. Regarding visual perception, video surveillance systems, such as multiple CCTV cameras, can capture gait cycles by processing consecutive video frames using threshold filtering, edge detection, pixel counting, and background segmentation. Regarding wearable sensors, pressure pads and IMUs (inertial measurement units) can be used for gait detection. Pressure pads can be placed inside shoes to measure foot pressure distribution by detecting applied pressure and corresponding electronic changes. IMUs can measure and record motion data, including displacement, velocity, and acceleration. These wearable sensors can effectively detect gait and have good wearability and freedom, suitable for natural gait indoors and outdoors. The application of these technologies provides various options for gait detection and has comprehensive practical value in smart walking. It also covers the application of machine learning and deep learning in gait analysis, as well as research results on health-related walking applications. The chapter provides a comprehensive introduction and overview of the related technologies and applications of health-related walking detection and analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.A. Hulleck et al., Present and future of gait assessment in clinical practice: towards the application of novel trends and technologies. Front Med Technol 4, 901331 (2022)CrossRef A.A. Hulleck et al., Present and future of gait assessment in clinical practice: towards the application of novel trends and technologies. Front Med Technol 4, 901331 (2022)CrossRef
2.
Zurück zum Zitat M. Burnfield, Gait analysis: normal and pathological function. J. Sports Sci. Med. 9(2), 353 (2010) M. Burnfield, Gait analysis: normal and pathological function. J. Sports Sci. Med. 9(2), 353 (2010)
3.
Zurück zum Zitat I. Rida et al., Improved Human Gait Recognition (Springer International Publishing, Cham, 2015)CrossRef I. Rida et al., Improved Human Gait Recognition (Springer International Publishing, Cham, 2015)CrossRef
4.
Zurück zum Zitat T. Ramakrishnan, S.H. Kim, K.B. Reed, Human gait analysis metric for gait retraining. Appl. Bionics Biomech. 2019, 1286864 (2019)CrossRef T. Ramakrishnan, S.H. Kim, K.B. Reed, Human gait analysis metric for gait retraining. Appl. Bionics Biomech. 2019, 1286864 (2019)CrossRef
5.
Zurück zum Zitat A.M. Muniz, J. Nadal, Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait. Gait Posture 29(1), 31–35 (2009)CrossRef A.M. Muniz, J. Nadal, Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait. Gait Posture 29(1), 31–35 (2009)CrossRef
6.
Zurück zum Zitat J.B. Dingwell, B.L. Davis, A rehabilitation treadmill with software for providing real-time gait analysis and visual feedback. J. Biomech. Eng. 118(2), 253–255 (1996)CrossRef J.B. Dingwell, B.L. Davis, A rehabilitation treadmill with software for providing real-time gait analysis and visual feedback. J. Biomech. Eng. 118(2), 253–255 (1996)CrossRef
8.
Zurück zum Zitat R. Cross, Standing, walking, running and jumping on a force plate. Am. J. Phys. 67(4), 304–309 (1999)CrossRef R. Cross, Standing, walking, running and jumping on a force plate. Am. J. Phys. 67(4), 304–309 (1999)CrossRef
9.
Zurück zum Zitat G. Beckham, T. Suchomel, S. Mizuguchi, Force plate use in performance monitoring and sport science testing. New Stud. Athletics 29(3), 25–37 (2014) G. Beckham, T. Suchomel, S. Mizuguchi, Force plate use in performance monitoring and sport science testing. New Stud. Athletics 29(3), 25–37 (2014)
13.
Zurück zum Zitat Y.-J. Lee, J.N. Liang, Characterizing intersection variability of butterfly diagram in post-stroke gait using Kernel density estimation. Gait Posture 76, 157–161 (2020)CrossRef Y.-J. Lee, J.N. Liang, Characterizing intersection variability of butterfly diagram in post-stroke gait using Kernel density estimation. Gait Posture 76, 157–161 (2020)CrossRef
14.
Zurück zum Zitat Y.-L. Yen et al., Recognition of walking directional intention employed ground reaction forces and center of pressure during gait initiation. Gait Posture 106, 23–27 (2023)CrossRef Y.-L. Yen et al., Recognition of walking directional intention employed ground reaction forces and center of pressure during gait initiation. Gait Posture 106, 23–27 (2023)CrossRef
16.
Zurück zum Zitat J. Hjelmgren, Dynamic Measurement of Pressure. A Literature Survey (2002) J. Hjelmgren, Dynamic Measurement of Pressure. A Literature Survey (2002)
19.
Zurück zum Zitat M.H. Khan, M.S. Farid, M. Grzegorzek, Vision-based approaches towards person identification using gait. Comput. Sci. Rev. 42, 100432 (2021)CrossRef M.H. Khan, M.S. Farid, M. Grzegorzek, Vision-based approaches towards person identification using gait. Comput. Sci. Rev. 42, 100432 (2021)CrossRef
20.
Zurück zum Zitat K. Sato et al., Quantifying normal and parkinsonian gait features from home movies: practical application of a deep learning–based 2D pose estimator. PLoS ONE 14(11), e0223549 (2019)CrossRef K. Sato et al., Quantifying normal and parkinsonian gait features from home movies: practical application of a deep learning–based 2D pose estimator. PLoS ONE 14(11), e0223549 (2019)CrossRef
21.
Zurück zum Zitat C.S.T. Hii et al., Automated gait analysis based on a marker-free pose estimation model. Sensors 23(14), 6489 (2023)CrossRef C.S.T. Hii et al., Automated gait analysis based on a marker-free pose estimation model. Sensors 23(14), 6489 (2023)CrossRef
22.
Zurück zum Zitat E. Hossain, G. Chetty, Multimodal feature learning for gait biometric based human identity recognition, in Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3–7, 2013. Proceedings, Part II 20 (Springer, 2013) E. Hossain, G. Chetty, Multimodal feature learning for gait biometric based human identity recognition, in Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3–7, 2013. Proceedings, Part II 20 (Springer, 2013)
23.
Zurück zum Zitat M. Jeevan et al., Gait recognition based on gait pal and pal entropy image, in 2013 IEEE International Conference on Image Processing (IEEE, 2013) M. Jeevan et al., Gait recognition based on gait pal and pal entropy image, in 2013 IEEE International Conference on Image Processing (IEEE, 2013)
24.
Zurück zum Zitat C. Wang et al., Chrono-gait image: a novel temporal template for gait recognition, in Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, Part I 11 (Springer, 2010) C. Wang et al., Chrono-gait image: a novel temporal template for gait recognition, in Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, Part I 11 (Springer, 2010)
25.
Zurück zum Zitat A.S. Alharthi, S.U. Yunas, K.B. Ozanyan, Deep learning for monitoring of human gait: a review. IEEE Sens. J. 19(21), 9575–9591 (2019)CrossRef A.S. Alharthi, S.U. Yunas, K.B. Ozanyan, Deep learning for monitoring of human gait: a review. IEEE Sens. J. 19(21), 9575–9591 (2019)CrossRef
26.
Zurück zum Zitat C. Yan, B. Zhang, F. Coenen, Multi-attributes gait identification by convolutional neural networks, in 2015 8th International Congress on Image and Signal Processing (CISP) (IEEE, 2015) C. Yan, B. Zhang, F. Coenen, Multi-attributes gait identification by convolutional neural networks, in 2015 8th International Congress on Image and Signal Processing (CISP) (IEEE, 2015)
27.
Zurück zum Zitat J. Tao et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6(1), 62 (2020)CrossRef J. Tao et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6(1), 62 (2020)CrossRef
28.
Zurück zum Zitat C.M. Senanayake, S.A. Senanayake, Computational intelligent gait-phase detection system to identify pathological gait. IEEE Trans. Inf. Technol. Biomed. 14(5), 1173–1179 (2010)CrossRef C.M. Senanayake, S.A. Senanayake, Computational intelligent gait-phase detection system to identify pathological gait. IEEE Trans. Inf. Technol. Biomed. 14(5), 1173–1179 (2010)CrossRef
29.
Zurück zum Zitat R. Harle et al., Towards real-time profiling of sprints using wearable pressure sensors. Comput. Commun. 35(6), 650–660 (2012)CrossRef R. Harle et al., Towards real-time profiling of sprints using wearable pressure sensors. Comput. Commun. 35(6), 650–660 (2012)CrossRef
30.
Zurück zum Zitat T. Stöggl, A. Martiner, Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. J. Sports Sci. 35(2), 196–206 (2017)CrossRef T. Stöggl, A. Martiner, Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. J. Sports Sci. 35(2), 196–206 (2017)CrossRef
31.
Zurück zum Zitat H. Prasanth et al., Wearable sensor-based real-time gait detection: a systematic review. Sensors 21(8), 2727 (2021)CrossRef H. Prasanth et al., Wearable sensor-based real-time gait detection: a systematic review. Sensors 21(8), 2727 (2021)CrossRef
32.
Zurück zum Zitat Z. Huang, J. Li, J. Lian, Wearable sensors for detecting and measuring kinetic characteristics, in Journal of Physics: Conference Series (IOP Publishing, 2022) Z. Huang, J. Li, J. Lian, Wearable sensors for detecting and measuring kinetic characteristics, in Journal of Physics: Conference Series (IOP Publishing, 2022)
33.
Zurück zum Zitat Y.-J. Chen, L.-X. Chen, Y.-J. Lee, Systematic evaluation of features from pressure sensors and step number in gait for age and gender recognition. IEEE Sens. J. 22(3), 1956–1963 (2021)CrossRef Y.-J. Chen, L.-X. Chen, Y.-J. Lee, Systematic evaluation of features from pressure sensors and step number in gait for age and gender recognition. IEEE Sens. J. 22(3), 1956–1963 (2021)CrossRef
34.
Zurück zum Zitat T.-H. Chen et al., Classification of high mental workload and emotional statuses via machine learning feature extractions in gait. Int. J. Ind. Ergon. 97, 103503 (2023)CrossRef T.-H. Chen et al., Classification of high mental workload and emotional statuses via machine learning feature extractions in gait. Int. J. Ind. Ergon. 97, 103503 (2023)CrossRef
35.
Zurück zum Zitat P. Arens et al., Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. Wearable Technol. 2, e2 (2021)CrossRef P. Arens et al., Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. Wearable Technol. 2, e2 (2021)CrossRef
36.
Zurück zum Zitat N. Ketkar, Convolutional neural networks, in Deep Learning with Python: A Hands-On Introduction. (Apress, Berkeley, CA, 2017), pp.63–78CrossRef N. Ketkar, Convolutional neural networks, in Deep Learning with Python: A Hands-On Introduction. (Apress, Berkeley, CA, 2017), pp.63–78CrossRef
37.
Zurück zum Zitat Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)CrossRef Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
38.
Zurück zum Zitat I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016) I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016)
39.
Zurück zum Zitat S.U. Yunas, K.B. Ozanyan, Gait activity classification using multi-modality sensor fusion: a deep learning approach. IEEE Sens. J. 21(15), 16870–16879 (2021)CrossRef S.U. Yunas, K.B. Ozanyan, Gait activity classification using multi-modality sensor fusion: a deep learning approach. IEEE Sens. J. 21(15), 16870–16879 (2021)CrossRef
40.
Zurück zum Zitat R. Romijnders et al., A deep learning approach for gait event detection from a single shank-worn IMU: validation in healthy and neurological cohorts. Sensors 22(10), 3859 (2022)CrossRef R. Romijnders et al., A deep learning approach for gait event detection from a single shank-worn IMU: validation in healthy and neurological cohorts. Sensors 22(10), 3859 (2022)CrossRef
41.
Zurück zum Zitat S. Bai, J.Z. Kolter, V. Koltun, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv preprint arXiv:1803.01271 (2018) S. Bai, J.Z. Kolter, V. Koltun, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv preprint arXiv:​1803.​01271 (2018)
42.
Zurück zum Zitat B. Filtjens et al., A data-driven approach for detecting gait events during turning in people with Parkinson’s disease and freezing of gait. Gait Posture Posture 80, 130–136 (2020)CrossRef B. Filtjens et al., A data-driven approach for detecting gait events during turning in people with Parkinson’s disease and freezing of gait. Gait Posture Posture 80, 130–136 (2020)CrossRef
43.
Zurück zum Zitat C.-C. Wu, Y.-T. Wen, Y.-J. Lee, IMU sensors beneath walking surface for ground reaction force prediction in gait. IEEE Sens. J. 20(16), 9372–9376 (2020) C.-C. Wu, Y.-T. Wen, Y.-J. Lee, IMU sensors beneath walking surface for ground reaction force prediction in gait. IEEE Sens. J. 20(16), 9372–9376 (2020)
Metadaten
Titel
Smart Gait Detection and Analysis
verfasst von
Tin-Chih Toly Chen
Yun-Ju Lee
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59443-4_3