Skip to main content
Erschienen in: Fire Technology 2/2024

17.11.2022

Suppression Behavior Difference Between Compressed Air/Nitrogen Foam over Liquid Fuel Surface Under Constant Radiation Heat Flux

verfasst von: Fengyuan Tian, Kun Wang, Jun Fang, Hassan Raza Shah, Xuqing Lang, Shanjun Mu, Jinjun Wang, Jingwu Wang

Erschienen in: Fire Technology | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Compressed air foam (CAF) and compressed nitrogen foam (CNF) have been widely used for storage tank fire suppression, benefiting from their highly effective extinguishing performance. Mass loss rate is an important parameter to evaluate the stability of foam and an important factor to influence the suppression efficiency of foam. In this work, mass loss mechanisms including drainage and evaporation of two types of foams under a fixed radiation source were experimentally studied to reflect the foam fire suppression efficiency. It was observed that the foam drain rate is directly proportional to the foam mass, with a slight relation to the irradiance when irradiance is lower than 20 kW/m2. Once the irradiance reaches 30 kW/m2, the drain rate increases significantly. For evaporation, as expected from the established theoretical model, the evaporation rate shows a positive relationship with the irradiance level. However, there is no relationship between foam evaporation rate and the initial foam thickness. Through the experimentally measured evaporation rate, the average foam absorptivity is calculated to be approximately 0.63 ± 0.07 for both foams at an expansion ratio (ER) of 10. A comparative analysis of mass loss characteristics in the two types of foam was also undertaken. It was found that the two types of foam have distinct drain rates due to their different foam stability caused by the different expanded gas properties. However, they have a similar evaporation rate. In addition, the foam destruction rate and time to ignite the underlying fuel were measured, and a linear relationship between ignition time and initial foam height was found with a slope of 1.7 ± 0.2. The results demonstrate that CNF has a better fire suppression efficiency, which can be attributed to the better stability of the foam and the nitrogen released by broken bubbles, which inhibits ignition. The work presented here reveals the different functional mechanisms of compressed air/nitrogen foam and presents useful information that could enhance our understanding of the fire suppression effects of fire extinguishing foam.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu X, Jiang N, Miao X et al (2020) Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams. Process Saf Environ Prot 133:201–215CrossRef Yu X, Jiang N, Miao X et al (2020) Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams. Process Saf Environ Prot 133:201–215CrossRef
2.
Zurück zum Zitat Hurtado Y, Franco CA, Riazi M et al (2020) Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol. J Mol Liq 300:112256CrossRef Hurtado Y, Franco CA, Riazi M et al (2020) Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol. J Mol Liq 300:112256CrossRef
3.
Zurück zum Zitat Gunderson JD (2004) Nitrogen foam fire suppression system for automobile under-hood post-collision fire protection, University of Maryland, Fire Protection Engineering Theses and Dissertations Gunderson JD (2004) Nitrogen foam fire suppression system for automobile under-hood post-collision fire protection, University of Maryland, Fire Protection Engineering Theses and Dissertations
4.
Zurück zum Zitat Shi B, Zhou F (2017) Application of a liquid nitrogen direct jet system to the extinguishment of oil pool fires in open space. Process Saf Prog 36(2):165–177MathSciNetCrossRef Shi B, Zhou F (2017) Application of a liquid nitrogen direct jet system to the extinguishment of oil pool fires in open space. Process Saf Prog 36(2):165–177MathSciNetCrossRef
5.
Zurück zum Zitat Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, Puchovsky M, Torero J, Watts JM, Wieczorek C (2016) SFPE Handbook of Fire Protection Engineering. Springer, BerlinCrossRef Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, Puchovsky M, Torero J, Watts JM, Wieczorek C (2016) SFPE Handbook of Fire Protection Engineering. Springer, BerlinCrossRef
6.
Zurück zum Zitat Isaksson S, Persson H (1997) Fire extinguishing foam. Test method for heat exposure characterization Isaksson S, Persson H (1997) Fire extinguishing foam. Test method for heat exposure characterization
7.
Zurück zum Zitat Magrabi SA, Dlugogorski BZ (2002) Foam drainage, coarsening, and evaporation. Transport processes in bubbles, drops and particles Magrabi SA, Dlugogorski BZ (2002) Foam drainage, coarsening, and evaporation. Transport processes in bubbles, drops and particles
8.
Zurück zum Zitat Lattimer BY, Hanauska CP, Scheffey JL et al (2003) The use of small-scale test data to characterize some aspects of fire fighting foam for suppression modeling. Fire Saf J 38(2):117–146CrossRef Lattimer BY, Hanauska CP, Scheffey JL et al (2003) The use of small-scale test data to characterize some aspects of fire fighting foam for suppression modeling. Fire Saf J 38(2):117–146CrossRef
9.
Zurück zum Zitat Grassia P, Neethling SJ, Cervantes C et al (2006) The growth, drainage and bursting of foams. Colloids Surf A 274(1–3):110–124CrossRef Grassia P, Neethling SJ, Cervantes C et al (2006) The growth, drainage and bursting of foams. Colloids Surf A 274(1–3):110–124CrossRef
10.
Zurück zum Zitat Conroy MW, Fleming JW, Ananth R (2017) Surface cooling of a pool fire by aqueous foams. Combust Sci Technol 189(5):806–840CrossRef Conroy MW, Fleming JW, Ananth R (2017) Surface cooling of a pool fire by aqueous foams. Combust Sci Technol 189(5):806–840CrossRef
11.
Zurück zum Zitat Wang K, Fang J, Shah HR et al (2020) A theoretical and experimental study of extinguishing compressed air foam on an n-heptane storage tank fire with variable fuel thickness. Process Saf Environ Prot 138:117–129CrossRef Wang K, Fang J, Shah HR et al (2020) A theoretical and experimental study of extinguishing compressed air foam on an n-heptane storage tank fire with variable fuel thickness. Process Saf Environ Prot 138:117–129CrossRef
12.
Zurück zum Zitat Military Specification: Fire Extinguishing Agent, Aqueous Film-Forming Foam (AFFF) Liquid Concentrate, for Fresh and Seawater, MIL-F-24385F, 1992. Military Specification: Fire Extinguishing Agent, Aqueous Film-Forming Foam (AFFF) Liquid Concentrate, for Fresh and Seawater, MIL-F-24385F, 1992.
13.
Zurück zum Zitat Thomsen ES, Gjaldbaek JC (1963) The solubility of hydrogen, nitrogen, oxygen and ethane in normal hydrocarbons. Acta Chem Scand 17(1):127–133CrossRef Thomsen ES, Gjaldbaek JC (1963) The solubility of hydrogen, nitrogen, oxygen and ethane in normal hydrocarbons. Acta Chem Scand 17(1):127–133CrossRef
14.
Zurück zum Zitat Farajzadeh R, Vincent-Bonnieu S, Bourada N (2014) Effect of gas permeability and solubility on foam. J Soft Matter Farajzadeh R, Vincent-Bonnieu S, Bourada N (2014) Effect of gas permeability and solubility on foam. J Soft Matter
15.
Zurück zum Zitat Battino R, Rettich TR, Tominaga T (1984) The solubility of nitrogen and air in liquids. J Phys Chem Ref Data 13(2):563–600CrossRef Battino R, Rettich TR, Tominaga T (1984) The solubility of nitrogen and air in liquids. J Phys Chem Ref Data 13(2):563–600CrossRef
16.
Zurück zum Zitat Bisperink CGJ, Ronteltap AD, Prins A (1992) Bubble-size distributions in foams. Adv Coll Interface Sci 38:13–32CrossRef Bisperink CGJ, Ronteltap AD, Prins A (1992) Bubble-size distributions in foams. Adv Coll Interface Sci 38:13–32CrossRef
17.
Zurück zum Zitat Farajzadeh R, Muruganathan RM, Rossen WR et al (2011) Effect of gas type on foam film permeability and its implications for foam flow in porous media. Adv Coll Interface Sci 168(1–2):71–78CrossRef Farajzadeh R, Muruganathan RM, Rossen WR et al (2011) Effect of gas type on foam film permeability and its implications for foam flow in porous media. Adv Coll Interface Sci 168(1–2):71–78CrossRef
18.
Zurück zum Zitat Quintiere JG (2006) Fundamentals of fire phenomena. Department of Fire Protection Engineering, University of Maryland, College ParkCrossRef Quintiere JG (2006) Fundamentals of fire phenomena. Department of Fire Protection Engineering, University of Maryland, College ParkCrossRef
19.
Zurück zum Zitat Sheng Y, Lu S, Jiang N et al (2018) Drainage of aqueous film-forming foam stabilized by different foam stabilizers. J Dispers Sci Technol 39(9):1266–1273CrossRef Sheng Y, Lu S, Jiang N et al (2018) Drainage of aqueous film-forming foam stabilized by different foam stabilizers. J Dispers Sci Technol 39(9):1266–1273CrossRef
20.
Zurück zum Zitat Magrabi SA, Dlugogorski BZ, Jameson GJ (2001) Free drainage in aqueous foams: model and experimental study. AIChE J 47(2):314–327CrossRef Magrabi SA, Dlugogorski BZ, Jameson GJ (2001) Free drainage in aqueous foams: model and experimental study. AIChE J 47(2):314–327CrossRef
21.
Zurück zum Zitat Persson H (1992) Fire extinguishing foam-resistance against heat radiation. Brandforsk Project 609-903, SP Report 1992:54 Persson H (1992) Fire extinguishing foam-resistance against heat radiation. Brandforsk Project 609-903, SP Report 1992:54
22.
Zurück zum Zitat Pelofsky AH (2002) Surface tension-viscosity relation for liquids. J Chem Eng Data 11:394–397CrossRef Pelofsky AH (2002) Surface tension-viscosity relation for liquids. J Chem Eng Data 11:394–397CrossRef
23.
Zurück zum Zitat Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, New YorkCrossRef Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, New YorkCrossRef
Metadaten
Titel
Suppression Behavior Difference Between Compressed Air/Nitrogen Foam over Liquid Fuel Surface Under Constant Radiation Heat Flux
verfasst von
Fengyuan Tian
Kun Wang
Jun Fang
Hassan Raza Shah
Xuqing Lang
Shanjun Mu
Jinjun Wang
Jingwu Wang
Publikationsdatum
17.11.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2024
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01332-0

Weitere Artikel der Ausgabe 2/2024

Fire Technology 2/2024 Zur Ausgabe