Skip to main content

2024 | OriginalPaper | Buchkapitel

Virtual Vehicle Development Approach to Optimize Energy Efficiency and Vehicle Stability of Electrified Vehicles Using Brake Blending

verfasst von : Dr.-Ing. Steven Yan, Ole Behnke, M.Sc., Dr.-Ing. Alexander Ahlert

Erschienen in: 13th International Munich Chassis Symposium 2022

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Driving range and efficiency are two of the major influencing factors on current electric vehicle development efforts. While the focus is obviously on battery and powertrain technology, an optimized braking system can greatly contribute to achieving range and efficiency goals. Significant negative torque generation by the electric powertrain adds an important degree of freedom to modern electrified brake systems. It not only influences range and efficiency in general but also requires the engineers to tune the electric driving experience according to the specific OEM’s vehicle DNA.
This interdisciplinary challenge between brake, chassis and powertrain systems has to be continuously incorporated into the development process and solved by a cross-domain team collaboration. A full vehicle simulation environment is able to support these activities. Early on, virtual vehicle prototypes can be built up and used in a MIL/SIL environment to evaluate the performance regarding relevant optimization criteria. Further on in the process, component prototypes can be included for calibration and testing on HIL test systems. Later in the process, this is also possible for full powertrain and chassis prototypes.
In an application example, the energy efficiency and vehicle stability of an EV with a rear-wheel drive (RWD) powertrain are analyzed and optimized for different real driving scenarios. Due to the RWD architecture, the amount of regenerative braking (recuperation) directly influencing the energy efficiency is limited depending on the dynamic driving situation. The results from the MIL testing environment indicate that a careful calibration is necessary to ensure the vehicle’s driving stability, but also allow for the highest amount of recuperation at the rear axle. Future studies will take the driver behavior as well as driving and brake pedal force calibration into account.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ahlert, A.: The Future of Vehicle Development Using Virtual Prototypes and an Interconnected Software Infrastructure. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 22. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-37009-1_16 Ahlert, A.: The Future of Vehicle Development Using Virtual Prototypes and an Interconnected Software Infrastructure. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 22. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden (2022). https://​doi.​org/​10.​1007/​978-3-658-37009-1_​16
6.
Zurück zum Zitat IPG Automotive: CarMaker Reference Manual Version 11.0. IPG Automotive, Karlsruhe (2022) IPG Automotive: CarMaker Reference Manual Version 11.0. IPG Automotive, Karlsruhe (2022)
7.
Zurück zum Zitat Reif, K., Noreikat, K.E., Borgeest, K., Daimler AG (eds.): Kraftfahrzeug-Hybridantriebe: Grundlagen, Komponenten, Systeme, Anwendungen. Springer Vieweg, Wiesbaden (2012) Reif, K., Noreikat, K.E., Borgeest, K., Daimler AG (eds.): Kraftfahrzeug-Hybridantriebe: Grundlagen, Komponenten, Systeme, Anwendungen. Springer Vieweg, Wiesbaden (2012)
9.
Zurück zum Zitat Kaldenbach, M., Spichartz, P., Sourkounis, C.: Assessment of Methods for Estimating the Maximum Coefficient of Friction between Road and Tire. In: 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE, Belfort, France (2017) https://doi.org/10.1109/VPPC.2017.8331037 Kaldenbach, M., Spichartz, P., Sourkounis, C.: Assessment of Methods for Estimating the Maximum Coefficient of Friction between Road and Tire. In: 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE, Belfort, France (2017) https://​doi.​org/​10.​1109/​VPPC.​2017.​8331037
11.
Zurück zum Zitat Breuer, B., Bill, K.H. (eds.): Bremsenhandbuch: Grundlagen, Komponenten, Systeme, Fahrdynamik, 5th edn. Springer Vieweg, Wiesbaden (2017) Breuer, B., Bill, K.H. (eds.): Bremsenhandbuch: Grundlagen, Komponenten, Systeme, Fahrdynamik, 5th edn. Springer Vieweg, Wiesbaden (2017)
Metadaten
Titel
Virtual Vehicle Development Approach to Optimize Energy Efficiency and Vehicle Stability of Electrified Vehicles Using Brake Blending
verfasst von
Dr.-Ing. Steven Yan
Ole Behnke, M.Sc.
Dr.-Ing. Alexander Ahlert
Copyright-Jahr
2024
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-68163-3_14

    Premium Partner