Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Association Analysis: Basic Concepts and Algorithms

verfasst von : Qingfeng Chen

Erschienen in: Association Analysis Techniques and Applications in Bioinformatics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In 1993, Agrawal et al. pioneered the theory of mining association rules from large database, which is used to identify interesting links between items in market basket data transactions. Market basket transaction is a typical example of the application of association analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Random walk describes a path consisting of a series of random steps in a certain mathematical space. See Sect. 2.7 for details.
 
Literatur
1.
Zurück zum Zitat AGRAWAL R, IMIELIŃSKI T, Swami A. Mining association rules between sets of items in large databases[C] //Proceedings of the 1993 ACM SIGMOD international conference on Management of data. 1993: 207–216. AGRAWAL R, IMIELIŃSKI T, Swami A. Mining association rules between sets of items in large databases[C] //Proceedings of the 1993 ACM SIGMOD international conference on Management of data. 1993: 207–216.
2.
Zurück zum Zitat AGRAWAL R, SRIKANT R, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, 1994, 1215:487–499. AGRAWAL R, SRIKANT R, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, 1994, 1215:487–499.
3.
Zurück zum Zitat HAN J W, KAMBER M, Pei J. Data Mining: Concepts and Techniques (3rd Edition) [M]. Translated by Fan Ming, Meng Xiaofeng. Beijing: Machinery Industry Press, 2012. HAN J W, KAMBER M, Pei J. Data Mining: Concepts and Techniques (3rd Edition) [M]. Translated by Fan Ming, Meng Xiaofeng. Beijing: Machinery Industry Press, 2012.
4.
Zurück zum Zitat TAN P N, STEINBACH M, KUMAR V. Introduction to Data Mining (Full Version) [M]. Fan Ming, translated by Fan Hongjian. Beijing: People’s Posts and Telecommunications Press, 2021. TAN P N, STEINBACH M, KUMAR V. Introduction to Data Mining (Full Version) [M]. Fan Ming, translated by Fan Hongjian. Beijing: People’s Posts and Telecommunications Press, 2021.
5.
Zurück zum Zitat LIU P, ZHANG Y. Data Mining[M]. Beijing: Electronic Industry Press, 2018. LIU P, ZHANG Y. Data Mining[M]. Beijing: Electronic Industry Press, 2018.
6.
Zurück zum Zitat SAVASERE A, OMIECINSKI E R, NAVATHE S B. An efficient algorithm for mining association rules in large databases[R]. Georgia Institute of Technology, 1995. SAVASERE A, OMIECINSKI E R, NAVATHE S B. An efficient algorithm for mining association rules in large databases[R]. Georgia Institute of Technology, 1995.
7.
Zurück zum Zitat PARK J S, CHEN M S, YU P S. An effective hash-based algorithm for mining association rules[J]. Acm sigmod record, 1995, 24(2): 175–186.MathSciNet PARK J S, CHEN M S, YU P S. An effective hash-based algorithm for mining association rules[J]. Acm sigmod record, 1995, 24(2): 175–186.MathSciNet
8.
Zurück zum Zitat MANNILA H, TOIVONEN H, VERKAMO A I. Efficient algorithms for discovering association rules[C]//KDD-94: AAAI workshop on Knowledge Discovery in Databases. 1994: 181–192. MANNILA H, TOIVONEN H, VERKAMO A I. Efficient algorithms for discovering association rules[C]//KDD-94: AAAI workshop on Knowledge Discovery in Databases. 1994: 181–192.
9.
Zurück zum Zitat HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[J]. ACM sigmod record, 2000, 29(2): 1–12. HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[J]. ACM sigmod record, 2000, 29(2): 1–12.
10.
Zurück zum Zitat PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341–356.MathSciNet PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341–356.MathSciNet
11.
Zurück zum Zitat PAWLAK Z, GRZYMALA-BUSSE J, SLOWINSKI R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11): 88–95. PAWLAK Z, GRZYMALA-BUSSE J, SLOWINSKI R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11): 88–95.
12.
Zurück zum Zitat VIGER P F, LIN C W, KIRAN R U, et al. A survey of sequential pattern mining. Data Science and Pattern Recognition, 2017, 1(1): 54–77. VIGER P F, LIN C W, KIRAN R U, et al. A survey of sequential pattern mining. Data Science and Pattern Recognition, 2017, 1(1): 54–77.
13.
Zurück zum Zitat AGRAWAL R, SRIKANT R. Mining sequential patterns[C] // Proceedings of the eleventh international conference on data engineering. IEEE, 1995: 3–14. AGRAWAL R, SRIKANT R. Mining sequential patterns[C] // Proceedings of the eleventh international conference on data engineering. IEEE, 1995: 3–14.
14.
Zurück zum Zitat WANG H, DING S. Research and Development of Sequential Pattern Mining [J]. Computer Science, 2009, 36(12): 14–17. WANG H, DING S. Research and Development of Sequential Pattern Mining [J]. Computer Science, 2009, 36(12): 14–17.
15.
Zurück zum Zitat SRIKANT R, AGRAWAL R. Mining sequential patterns: Generalizations and performance improvements[C] //International conference on extending database technology. Springer, Berlin, Heidelberg, 1996: 1–17. SRIKANT R, AGRAWAL R. Mining sequential patterns: Generalizations and performance improvements[C] //International conference on extending database technology. Springer, Berlin, Heidelberg, 1996: 1–17.
16.
Zurück zum Zitat ZHANG M, KAO B, YIP C, et a1. A GSP-based efficient algorithm for mining frequent sequences[C] //Proc. of International Conference on Artificial Intelligence. Nevada, 2001. ZHANG M, KAO B, YIP C, et a1. A GSP-based efficient algorithm for mining frequent sequences[C] //Proc. of International Conference on Artificial Intelligence. Nevada, 2001.
17.
Zurück zum Zitat MASSEGLIA F, CATHALA F, PONCELET P. The PSP approach for mining sequential patterns[C] //Proc. of the 2nd European. Symposium on Principles of Data Mining and Knowledge Discovery. Berlin: Springer-Verlag, 1998, 1510: 176–184. MASSEGLIA F, CATHALA F, PONCELET P. The PSP approach for mining sequential patterns[C] //Proc. of the 2nd European. Symposium on Principles of Data Mining and Knowledge Discovery. Berlin: Springer-Verlag, 1998, 1510: 176–184.
18.
Zurück zum Zitat ZAKI M J. SPADE: An efficient algorithm for mining frequent sequences[J]. Machine Learning, 2001, 41(1): 31–60. ZAKI M J. SPADE: An efficient algorithm for mining frequent sequences[J]. Machine Learning, 2001, 41(1): 31–60.
19.
Zurück zum Zitat HAN J, PEI J, MORTAZVI-ASL B, et a1. FreeSpan: frequent pattern projected sequential pattern mining[C] // Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM Press, 2000: 355–359. HAN J, PEI J, MORTAZVI-ASL B, et a1. FreeSpan: frequent pattern projected sequential pattern mining[C] // Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM Press, 2000: 355–359.
20.
Zurück zum Zitat HAN J, PEI J, MORTAZAVI-ASL B, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth[C] //Proceedings of the 17th international conference on data engineering. Washington DC: IEEE Computer Society, 2001: 215–224. HAN J, PEI J, MORTAZAVI-ASL B, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth[C] //Proceedings of the 17th international conference on data engineering. Washington DC: IEEE Computer Society, 2001: 215–224.
21.
Zurück zum Zitat LIN M Y, LEE S Y. Fast discovery of sequential patterns by memory indexing[C] // Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery. London UK: Springer-Verlag, 2002: 150–160. LIN M Y, LEE S Y. Fast discovery of sequential patterns by memory indexing[C] // Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery. London UK: Springer-Verlag, 2002: 150–160.
22.
Zurück zum Zitat SUI Y, SHAO F, SUN R, et al. A Sequential Pattern Mining Algorithm Based on Improved FP-tree, 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008: 440–444. SUI Y, SHAO F, SUN R, et al. A Sequential Pattern Mining Algorithm Based on Improved FP-tree, 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008: 440–444.
23.
Zurück zum Zitat INOKUCHI A, WASHIO T, MOTODA H. An apriori-based algorithm for mining frequent substructures from graph data[C] //European conference on principles of data mining and knowledge discovery. Springer, Berlin, Heidelberg, 2000: 13–23. INOKUCHI A, WASHIO T, MOTODA H. An apriori-based algorithm for mining frequent substructures from graph data[C] //European conference on principles of data mining and knowledge discovery. Springer, Berlin, Heidelberg, 2000: 13–23.
24.
Zurück zum Zitat YAN X, HAN J. gSpan: Graph-based substructure pattern mining[C] //2002 IEEE International Conference on Data Mining, 2002. Proceedings. IEEE, 2002: 721–724. YAN X, HAN J. gSpan: Graph-based substructure pattern mining[C] //2002 IEEE International Conference on Data Mining, 2002. Proceedings. IEEE, 2002: 721–724.
25.
Zurück zum Zitat HUAN J, WANG W, PRINS J. Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism. In 2003 IEEE International Conference on Data Mining, 2003: 549–552. HUAN J, WANG W, PRINS J. Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism. In 2003 IEEE International Conference on Data Mining, 2003: 549–552.
26.
Zurück zum Zitat CHEN Q F, LAN C W, CHEN B S, et al. Exploring consensus RNA substructural patterns using subgraph mining. IEEE/ACM transactions on computational biology and bioinformatics. 2016, 14(5): 1134–1146. CHEN Q F, LAN C W, CHEN B S, et al. Exploring consensus RNA substructural patterns using subgraph mining. IEEE/ACM transactions on computational biology and bioinformatics. 2016, 14(5): 1134–1146.
27.
Zurück zum Zitat VANETIK N, GUDES E, SHIMONY S E. Computing Frequent Graph Patterns from Semi-structured Data. In 2002 IEEE International Conference on Data Mining, 2002: 458–465. VANETIK N, GUDES E, SHIMONY S E. Computing Frequent Graph Patterns from Semi-structured Data. In 2002 IEEE International Conference on Data Mining, 2002: 458–465.
28.
Zurück zum Zitat HU H, YAN X, HUANG Y, et a1. Mining Coherent Dense Subgraphs across Massive Biological Networks for Functional Discovery. Bioinformatics, 2005, 21(1): 213–221. HU H, YAN X, HUANG Y, et a1. Mining Coherent Dense Subgraphs across Massive Biological Networks for Functional Discovery. Bioinformatics, 2005, 21(1): 213–221.
29.
Zurück zum Zitat FATTA G D, BERTHOLD M R. High Performance Subgraph Mining in Molecular Compounds[C] //International Conference on High Performance Computing and Communications, Sorrento, Italy, 2005: 866–877. FATTA G D, BERTHOLD M R. High Performance Subgraph Mining in Molecular Compounds[C] //International Conference on High Performance Computing and Communications, Sorrento, Italy, 2005: 866–877.
30.
Zurück zum Zitat Zhang Wei. Research on Frequent Subgraph Mining Algorithm[D]. Yanshan University, 2011. Zhang Wei. Research on Frequent Subgraph Mining Algorithm[D]. Yanshan University, 2011.
31.
Zurück zum Zitat WASHIO T, MOTODA H. State of the art of graph based data mining[J]. Acm Sigkdd Explorations Newsletter, 2003, 5(1): 59–68. WASHIO T, MOTODA H. State of the art of graph based data mining[J]. Acm Sigkdd Explorations Newsletter, 2003, 5(1): 59–68.
32.
Zurück zum Zitat COOK D J, HOLDER L B. Substructure discovery using minimum description length and background knowledge[J]. Journal of Artificial Intelligence Research, 1993: 231–255. COOK D J, HOLDER L B. Substructure discovery using minimum description length and background knowledge[J]. Journal of Artificial Intelligence Research, 1993: 231–255.
33.
Zurück zum Zitat INOKUCHI A, WASHIN T, NISHIMURA K, et al. A Fast Algorithm for Mining Frequent Connected Subgraphs. IBM Research Report. 2002. INOKUCHI A, WASHIN T, NISHIMURA K, et al. A Fast Algorithm for Mining Frequent Connected Subgraphs. IBM Research Report. 2002.
34.
Zurück zum Zitat KURAMOCHI M, KARYPIS G. Frequent Subgraph Discovery. In Proceedings 2001 IEEE international conference on data mining, 2001: 313–320. KURAMOCHI M, KARYPIS G. Frequent Subgraph Discovery. In Proceedings 2001 IEEE international conference on data mining, 2001: 313–320.
35.
Zurück zum Zitat YAN X, HAN J. Closegraph: mining closed frequent graph patterns[C] //Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003: 286–295. YAN X, HAN J. Closegraph: mining closed frequent graph patterns[C] //Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003: 286–295.
36.
Zurück zum Zitat HUAN J, WANG W, PRINS J. Efficient mining of frequent subgraphs in the presence of isomorphism. Third IEEE international conference on data mining. 2003: 449–552. HUAN J, WANG W, PRINS J. Efficient mining of frequent subgraphs in the presence of isomorphism. Third IEEE international conference on data mining. 2003: 449–552.
37.
Zurück zum Zitat SAVASERE A, OMIECINSKI E, NAVATHE S. Mining for strong negative associations in a large database of customer transactions[C] //Proceedings 14th International Conference on Data Engineering. IEEE, 1998: 494–502. SAVASERE A, OMIECINSKI E, NAVATHE S. Mining for strong negative associations in a large database of customer transactions[C] //Proceedings 14th International Conference on Data Engineering. IEEE, 1998: 494–502.
38.
Zurück zum Zitat WU X, ZHANG C, ZHANG S. Mining both positive and negative association rules[C] //International Conference on Machine Learning. 2002, 2: 658–665. WU X, ZHANG C, ZHANG S. Mining both positive and negative association rules[C] //International Conference on Machine Learning. 2002, 2: 658–665.
39.
Zurück zum Zitat ANTONIE M L, ZAÏANE O R. Mining positive and negative association rules: An approach for confined rules[C] //European Conference on Principles of Data Mining and Knowledge Discovery. 2004: 27–38. ANTONIE M L, ZAÏANE O R. Mining positive and negative association rules: An approach for confined rules[C] //European Conference on Principles of Data Mining and Knowledge Discovery. 2004: 27–38.
40.
Zurück zum Zitat ZHANG S C, CHEN F, WU X D. Identifying bridging rules between conceptual clusters[C] //Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 2006: 815–820. ZHANG S C, CHEN F, WU X D. Identifying bridging rules between conceptual clusters[C] //Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 2006: 815–820.
41.
Zurück zum Zitat MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013. MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
42.
Zurück zum Zitat Ng P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv preprint arXiv:1701.06279, 2017. Ng P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv preprint arXiv:1701.06279, 2017.
43.
Zurück zum Zitat WANG Y, HOU Y, CHE W, et al. From static to dynamic word representations: a survey[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(7): 1611–1630. WANG Y, HOU Y, CHE W, et al. From static to dynamic word representations: a survey[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(7): 1611–1630.
44.
Zurück zum Zitat McClelland J L, Rumelhart D E, PDP Research Group. Parallel distributed processing[M]. Cambridge, MA: MIT press, 1986. McClelland J L, Rumelhart D E, PDP Research Group. Parallel distributed processing[M]. Cambridge, MA: MIT press, 1986.
45.
Zurück zum Zitat HUANG F, YATES A. Distributional representations for handling sparsity in supervised sequence-labeling[C] //Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. 2009: 495–503. HUANG F, YATES A. Distributional representations for handling sparsity in supervised sequence-labeling[C] //Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. 2009: 495–503.
46.
Zurück zum Zitat DAGAN I, PEREIRA F, LEE L. Similarity-based estimation of word cooccurrence probabilities[J]. arXiv preprint cmp-lg/9405001, 1994. DAGAN I, PEREIRA F, LEE L. Similarity-based estimation of word cooccurrence probabilities[J]. arXiv preprint cmp-lg/9405001, 1994.
47.
Zurück zum Zitat DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American society for information science. 1990, 41(6): 391–407. DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American society for information science. 1990, 41(6): 391–407.
48.
Zurück zum Zitat BLEI D M, NG A, JORDAN M I. Latent dirichlet allocation[J]. The Journal of Machine Learning Research. 2003, 3: 993–1022. BLEI D M, NG A, JORDAN M I. Latent dirichlet allocation[J]. The Journal of Machine Learning Research. 2003, 3: 993–1022.
49.
Zurück zum Zitat BENGIO Y, DUCHARME R, VINCENT P. A neural probabilistic language model[J]. Advances in Neural Information Processing Systems, 2003: 1137–1155. BENGIO Y, DUCHARME R, VINCENT P. A neural probabilistic language model[J]. Advances in Neural Information Processing Systems, 2003: 1137–1155.
50.
Zurück zum Zitat PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014: 1532–1543. PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014: 1532–1543.
51.
Zurück zum Zitat MCCANN B, BRADBURY J, XIONG C, et al. Learned in translation: contextualized word vectors. Advances in neural information processing systems. 2017, 30:6294–6305. MCCANN B, BRADBURY J, XIONG C, et al. Learned in translation: contextualized word vectors. Advances in neural information processing systems. 2017, 30:6294–6305.
52.
Zurück zum Zitat PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations. Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies. 2018, 1: 2227–2237. PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations. Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies. 2018, 1: 2227–2237.
53.
Zurück zum Zitat Heinzinger M, Elnaggar A, Wang Y, et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC bioinformatics. 2019: 20(1):1–7. Heinzinger M, Elnaggar A, Wang Y, et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC bioinformatics. 2019: 20(1):1–7.
54.
Zurück zum Zitat DEVLIN J, CHANG M W, LEE K, et al. Bert: Pretraining of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT. 2019: 4171–4186. DEVLIN J, CHANG M W, LEE K, et al. Bert: Pretraining of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT. 2019: 4171–4186.
55.
Zurück zum Zitat PEARSON K.The problem of the random walk[J], Nature, 1905, 72(1865): 294–294. PEARSON K.The problem of the random walk[J], Nature, 1905, 72(1865): 294–294.
56.
Zurück zum Zitat PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: Bringing order to the web[R]. Stanford InfoLab, 1999. PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: Bringing order to the web[R]. Stanford InfoLab, 1999.
57.
Zurück zum Zitat PAN J Y, YANG H J, FALOUTSOS C, et al. Automatic multimedia cross-modal correlation discovery[C] //Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 2004: 653–658. PAN J Y, YANG H J, FALOUTSOS C, et al. Automatic multimedia cross-modal correlation discovery[C] //Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 2004: 653–658.
58.
Zurück zum Zitat SHEN J, DU Y, WANG W, et al. Lazy random walks for superpixel segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1451–1462. SHEN J, DU Y, WANG W, et al. Lazy random walks for superpixel segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1451–1462.
59.
Zurück zum Zitat LOVÁSZ L. Random walks on graphs: A survey, Combinatorics, Paul Erdos Eighty[J]. lecture notes in mathematics, 1993, 2(1): 1–46. LOVÁSZ L. Random walks on graphs: A survey, Combinatorics, Paul Erdos Eighty[J]. lecture notes in mathematics, 1993, 2(1): 1–46.
60.
Zurück zum Zitat BRAND M. A random walks perspective on maximizing satisfaction and profit[C] //Proceedings of the 2005 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2005: 12–19. BRAND M. A random walks perspective on maximizing satisfaction and profit[C] //Proceedings of the 2005 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2005: 12–19.
61.
Zurück zum Zitat GORI M, PUCCI A, ROMA V, et al. Itemrank: A random-walk based scoring algorithm for recommender engines[C]//International Joint Conference on Artificial Intelligence. 2007, 7: 2766–2771. GORI M, PUCCI A, ROMA V, et al. Itemrank: A random-walk based scoring algorithm for recommender engines[C]//International Joint Conference on Artificial Intelligence. 2007, 7: 2766–2771.
62.
Zurück zum Zitat XIA F, LIU H F, LEE I, et al. Scientific article recommendation: Exploiting common author relations and historical preferences[J]. IEEE Transactions on Big Data, 2016, 2(2): 101–112. XIA F, LIU H F, LEE I, et al. Scientific article recommendation: Exploiting common author relations and historical preferences[J]. IEEE Transactions on Big Data, 2016, 2(2): 101–112.
63.
Zurück zum Zitat LIU W P, LÜ L Y. Link prediction based on local random walk[J]. EPL (europhysics Letters), 2010, 89(5): 58007. LIU W P, LÜ L Y. Link prediction based on local random walk[J]. EPL (europhysics Letters), 2010, 89(5): 58007.
64.
Zurück zum Zitat BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks[C] //Proceedings of the fourth ACM international conference on Web search and data mining. 2011: 635–644. BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks[C] //Proceedings of the fourth ACM international conference on Web search and data mining. 2011: 635–644.
65.
Zurück zum Zitat SINGHAL A. Introducing the knowledge graph: things, not strings[Z]. Official Google Blog. 2012. SINGHAL A. Introducing the knowledge graph: things, not strings[Z]. Official Google Blog. 2012.
66.
Zurück zum Zitat McCray AT. An upper-level ontology for the biomedical domain. Comparative and Functional genomics. 2003, 4(1): 80–4. McCray AT. An upper-level ontology for the biomedical domain. Comparative and Functional genomics. 2003, 4(1): 80–4.
67.
Zurück zum Zitat Li Danya, Hu Tiejun, Li Junlian, Qian Qing, Zhu Wenyan. Construction and Application of Chinese Integrated Medical Language System[J]. Journal of Information, 2011,30(02):147–151. Li Danya, Hu Tiejun, Li Junlian, Qian Qing, Zhu Wenyan. Construction and Application of Chinese Integrated Medical Language System[J]. Journal of Information, 2011,30(02):147–151.
68.
Zurück zum Zitat Aodema, Yang Yunfei, Sui Zhifang, etc. A Preliminary Study on the Construction of Chinese Medical Knowledge Graph CMeKG [J]. Chinese Journal of Information, 2019, 33(10): 1–9. Aodema, Yang Yunfei, Sui Zhifang, etc. A Preliminary Study on the Construction of Chinese Medical Knowledge Graph CMeKG [J]. Chinese Journal of Information, 2019, 33(10): 1–9.
69.
Zurück zum Zitat Guan S, Jin X, Jia Y, et al. Research Progress on Knowledge Reasoning Based on Knowledge Graph[J]. Journal of Software, 2018, 29(10): 2966–2994.MathSciNet Guan S, Jin X, Jia Y, et al. Research Progress on Knowledge Reasoning Based on Knowledge Graph[J]. Journal of Software, 2018, 29(10): 2966–2994.MathSciNet
70.
Zurück zum Zitat CHEN X J, JIA S B, XIANG Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. CHEN X J, JIA S B, XIANG Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948.
71.
Zurück zum Zitat SCHOENMACKERS S, DAVIS J, ETZIONI O, et al. Learning first-order horn clauses from web text[C] //Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 2010: 1088–1098. SCHOENMACKERS S, DAVIS J, ETZIONI O, et al. Learning first-order horn clauses from web text[C] //Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 2010: 1088–1098.
72.
Zurück zum Zitat NAKASHOLE N, SOZIO M, SUCHANEK F M, et al. Query-time reasoning in uncertain RDF knowledge bases with soft and hard rules[J]. International Conference on Very Large Data Bases, 2012, 884: 15–20. NAKASHOLE N, SOZIO M, SUCHANEK F M, et al. Query-time reasoning in uncertain RDF knowledge bases with soft and hard rules[J]. International Conference on Very Large Data Bases, 2012, 884: 15–20.
73.
Zurück zum Zitat GALÁRRAGA L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C] //Proceedings of the 22nd international conference on World Wide Web. 2013: 413–422. GALÁRRAGA L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C] //Proceedings of the 22nd international conference on World Wide Web. 2013: 413–422.
74.
Zurück zum Zitat MITCHELL T, COHEN W, HRUSCHKA E, et al. Never-ending learning[J]. Communications of the ACM, 2018, 61(5): 103–115. MITCHELL T, COHEN W, HRUSCHKA E, et al. Never-ending learning[J]. Communications of the ACM, 2018, 61(5): 103–115.
75.
Zurück zum Zitat PAULHEIM H, BIZER C. Improving the quality of linked data using statistical distributions[J]. International Journal on Semantic Web and Information Systems (IJSWIS), 2014, 10(2): 63–86. PAULHEIM H, BIZER C. Improving the quality of linked data using statistical distributions[J]. International Journal on Semantic Web and Information Systems (IJSWIS), 2014, 10(2): 63–86.
76.
Zurück zum Zitat JANG S, MEGAWATI M, CHOI J, et al. Semi-automatic quality assessment of linked data without requiring ontology[C] //Proceedings of the Third NLP&DBpedia Workshop (NLP & DBpedia 2015) co-located with the 14th International Semantic Web Conference 2015 (ISWC 2015). 2015: 45–55. JANG S, MEGAWATI M, CHOI J, et al. Semi-automatic quality assessment of linked data without requiring ontology[C] //Proceedings of the Third NLP&DBpedia Workshop (NLP & DBpedia 2015) co-located with the 14th International Semantic Web Conference 2015 (ISWC 2015). 2015: 45–55.
77.
Zurück zum Zitat WANG W Y, MAZAITIS K, COHEN W W. Programming with personalized pagerank: a locally groundable first-order probabilistic logic[C] //Proceedings of the 22nd ACM international conference on Information & Knowledge Management. 2013: 2129–2138. WANG W Y, MAZAITIS K, COHEN W W. Programming with personalized pagerank: a locally groundable first-order probabilistic logic[C] //Proceedings of the 22nd ACM international conference on Information & Knowledge Management. 2013: 2129–2138.
78.
Zurück zum Zitat CATHERINE R, COHEN W. Personalized recommendations using knowledge graphs: A probabilistic logic programming approach[C] //Proceedings of the 10th ACM conference on recommender systems. 2016: 325–332. CATHERINE R, COHEN W. Personalized recommendations using knowledge graphs: A probabilistic logic programming approach[C] //Proceedings of the 10th ACM conference on recommender systems. 2016: 325–332.
79.
Zurück zum Zitat JIANG S P, LOWD D, DOU D J. Learning to refine an automatically extracted knowledge base using markov logic[C] //2012 IEEE 12th International Conference on Data Mining. 2012: 912–917. JIANG S P, LOWD D, DOU D J. Learning to refine an automatically extracted knowledge base using markov logic[C] //2012 IEEE 12th International Conference on Data Mining. 2012: 912–917.
80.
Zurück zum Zitat CHEN Y, WANG D Z. Knowledge expansion over probabilistic knowledge bases[C] //Proceedings of the 2014 ACM SIGMOD international conference on Management of data. 2014: 649–660. CHEN Y, WANG D Z. Knowledge expansion over probabilistic knowledge bases[C] //Proceedings of the 2014 ACM SIGMOD international conference on Management of data. 2014: 649–660.
81.
Zurück zum Zitat KUŽELKA O, DAVIS J. Markov logic networks for knowledge base completion: A theoretical analysis under the MCAR assumption[C] //Uncertainty in Artificial Intelligence. PMLR, 2020: 1138–1148. KUŽELKA O, DAVIS J. Markov logic networks for knowledge base completion: A theoretical analysis under the MCAR assumption[C] //Uncertainty in Artificial Intelligence. PMLR, 2020: 1138–1148.
82.
Zurück zum Zitat KIMMIG A, BACH S, BROECHELER M, et al. A short introduction to probabilistic soft logic[C]//Proceedings of the NIPS workshop on probabilistic programming: foundations and applications. 2012: 1–4. KIMMIG A, BACH S, BROECHELER M, et al. A short introduction to probabilistic soft logic[C]//Proceedings of the NIPS workshop on probabilistic programming: foundations and applications. 2012: 1–4.
83.
Zurück zum Zitat NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C] //International Conference on Machine Learning. 2011. NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C] //International Conference on Machine Learning. 2011.
84.
Zurück zum Zitat BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[J]. Advances in neural information processing systems, 2013, 26. BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[J]. Advances in neural information processing systems, 2013, 26.
85.
Zurück zum Zitat BORDES A, GLOROT X, WESTON J, et al. Joint learning of words and meaning representations for open-text semantic parsing[C] //Artificial intelligence and statistics. PMLR, 2012: 127–135. BORDES A, GLOROT X, WESTON J, et al. Joint learning of words and meaning representations for open-text semantic parsing[C] //Artificial intelligence and statistics. PMLR, 2012: 127–135.
86.
Zurück zum Zitat SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[J]. Advances in neural information processing systems, 2013, 26. SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[J]. Advances in neural information processing systems, 2013, 26.
87.
Zurück zum Zitat CHEN D, SOCHER R, MANNING C D, et al. Learning new facts from knowledge bases with neural tensor networks and semantic word vectors[J]. arXiv preprint arXiv:1301.3618, 2013. CHEN D, SOCHER R, MANNING C D, et al. Learning new facts from knowledge bases with neural tensor networks and semantic word vectors[J]. arXiv preprint arXiv:1301.3618, 2013.
88.
Zurück zum Zitat SHI B, WENINGER T. Proje: Embedding projection for knowledge graph completion[C] //Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1). SHI B, WENINGER T. Proje: Embedding projection for knowledge graph completion[C] //Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1).
89.
Zurück zum Zitat LIU Q, JIANG H, EVDOKIMOV A, et al. Probabilistic reasoning via deep learning: Neural association models[J]. arXiv preprint arXiv:1603.07704, 2016. LIU Q, JIANG H, EVDOKIMOV A, et al. Probabilistic reasoning via deep learning: Neural association models[J]. arXiv preprint arXiv:1603.07704, 2016.
90.
Zurück zum Zitat WANG X, SONG X. Design of Network Security Vulnerability Type Correlation Analysis System Based on Knowledge Graph [J]. Electronic Design Engineering, 2021, 29(17):85–89.MathSciNet WANG X, SONG X. Design of Network Security Vulnerability Type Correlation Analysis System Based on Knowledge Graph [J]. Electronic Design Engineering, 2021, 29(17):85–89.MathSciNet
91.
Zurück zum Zitat GUO J. Research on Association Analysis Method of Aviation Safety Events Based on Knowledge Graph[D]. Civil Aviation University of China, 2020. GUO J. Research on Association Analysis Method of Aviation Safety Events Based on Knowledge Graph[D]. Civil Aviation University of China, 2020.
92.
Zurück zum Zitat LI Y. Construction and application of knowledge graph for natural disaster emergency response [D]. Wuhan University, 2021. LI Y. Construction and application of knowledge graph for natural disaster emergency response [D]. Wuhan University, 2021.
93.
Zurück zum Zitat LIU B. Research on Association Analysis Technology of Cyberspace Resources Based on Knowledge Graph [D]. Huazhong University of Science and Technology, 2019. LIU B. Research on Association Analysis Technology of Cyberspace Resources Based on Knowledge Graph [D]. Huazhong University of Science and Technology, 2019.
94.
Zurück zum Zitat WANG W. Research on Association Analysis Technology of Distributed Security Events Based on Knowledge Graph [D]. National University of Defense Technology, 2018. WANG W. Research on Association Analysis Technology of Distributed Security Events Based on Knowledge Graph [D]. National University of Defense Technology, 2018.
95.
Zurück zum Zitat CHEN X. Research on Information Association Analysis Method Based on Knowledge Graph [D]. Harbin Engineering University, 2018. CHEN X. Research on Information Association Analysis Method Based on Knowledge Graph [D]. Harbin Engineering University, 2018.
96.
Zurück zum Zitat Wu Jiamin. Construction and analysis of lung cancer medical knowledge map [D]. Ningxia University, 2019. Wu Jiamin. Construction and analysis of lung cancer medical knowledge map [D]. Ningxia University, 2019.
97.
Zurück zum Zitat Nordon G, Koren G, Shalev V, et al. Separating wheat from chaff: Joining biomedical knowledge and patient data for repurposing medications[C] //Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 9565–9572. Nordon G, Koren G, Shalev V, et al. Separating wheat from chaff: Joining biomedical knowledge and patient data for repurposing medications[C] //Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 9565–9572.
Metadaten
Titel
Association Analysis: Basic Concepts and Algorithms
verfasst von
Qingfeng Chen
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8251-6_2

Premium Partner