Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Complex Networks: Basic Concepts, Construction, and Learning Methods

verfasst von : Qingfeng Chen

Erschienen in: Association Analysis Techniques and Applications in Bioinformatics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces an approach to modeling called complex networks. Complex networks are an abstract model for understanding real-world complex systems. It abstracts entities in a complex system into nodes and abstracts the relationship between entities into connections.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan, 1976. BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan, 1976.
2.
Zurück zum Zitat FELLMANN E.A. Leonhard Euler[M]. Springer Science & Business Media, 2007. FELLMANN E.A. Leonhard Euler[M]. Springer Science & Business Media, 2007.
3.
Zurück zum Zitat BIGGS N, LLOYD E K, WILSON R J. Graph Theory[M]. Oxford University Press, 1986. BIGGS N, LLOYD E K, WILSON R J. Graph Theory[M]. Oxford University Press, 1986.
4.
Zurück zum Zitat JACQUELINE HECHT.Un exemple de multidisciplinarité: Alexandre Vandermonde (1735–1796)[J]. 1971, Population, 4(26): 641–676. JACQUELINE HECHT.Un exemple de multidisciplinarité: Alexandre Vandermonde (1735–1796)[J]. 1971, Population, 4(26): 641–676.
5.
Zurück zum Zitat CAUCHY A L. Research on polyhedra [J]. 1813, Polytechnic School, 9(16): 68–86. CAUCHY A L. Research on polyhedra [J]. 1813, Polytechnic School, 9(16): 68–86.
6.
Zurück zum Zitat L’HUILLIER M C. The empire of words: speakers Gauls and emperors Romans [J]. Persée-Portal of scientific journals in SHS, 1992, 3rd and 4th centuries (no. 1). L’HUILLIER M C. The empire of words: speakers Gauls and emperors Romans [J]. Persée-Portal of scientific journals in SHS, 1992, 3rd and 4th centuries (no. 1).
7.
Zurück zum Zitat CAYLEY A. On the theory of the analytical forms called trees[J]. Mathematical papers, 1890, 3: 242–246. CAYLEY A. On the theory of the analytical forms called trees[J]. Mathematical papers, 1890, 3: 242–246.
8.
Zurück zum Zitat CAYLEY E. About the analytical Figures, which in mathematics trees called will and their application to the theory chemical Compounds [J]. Reports of the German Chemical Society, 1875, 8(2): 1056–1059. CAYLEY E. About the analytical Figures, which in mathematics trees called will and their application to the theory chemical Compounds [J]. Reports of the German Chemical Society, 1875, 8(2): 1056–1059.
9.
Zurück zum Zitat NEW YEARS J J. Chemistry and algebra[J]. Nature, 1878, 1 7(432): 2 84. NEW YEARS J J. Chemistry and algebra[J]. Nature, 1878, 1 7(432): 2 84.
10.
Zurück zum Zitat TUTTE W T. Graph theory[M]. Cambridge university press, 2001. TUTTE W T. Graph theory[M]. Cambridge university press, 2001.
11.
Zurück zum Zitat ORE O. The four-color problem[M]. Academic Press, 2011. ORE O. The four-color problem[M]. Academic Press, 2011.
12.
Zurück zum Zitat BOLLOBÁS B. Extremal graph theory [M]. Courier Corporation, 2004. BOLLOBÁS B. Extremal graph theory [M]. Courier Corporation, 2004.
13.
Zurück zum Zitat HEESCH H. Investigations for the Four color problem [M]. Bibliographic Institute, 1969. HEESCH H. Investigations for the Four color problem [M]. Bibliographic Institute, 1969.
14.
Zurück zum Zitat APPEL K, HAKEN W, KOCH J. Every planar map is four colorable. Part II: Reducibility[J]. Illinois journal of mathematics, 1977, 21(3): 491–567.MathSciNet APPEL K, HAKEN W, KOCH J. Every planar map is four colorable. Part II: Reducibility[J]. Illinois journal of mathematics, 1977, 21(3): 491–567.MathSciNet
15.
Zurück zum Zitat APPEL K I, HAKEN W. Every planar map is four colorable[M]. American Mathematical Soc, 1989. APPEL K I, HAKEN W. Every planar map is four colorable[M]. American Mathematical Soc, 1989.
16.
Zurück zum Zitat ROBERTSON N, SANDERS D, SEYMOUR P, et al. The four-colour theorem[J]. Series B, 1997, 70(1): 2–44.MathSciNet ROBERTSON N, SANDERS D, SEYMOUR P, et al. The four-colour theorem[J]. Series B, 1997, 70(1): 2–44.MathSciNet
17.
Zurück zum Zitat HARARY F, PALMER E M. Graphical enumeration[M]. Elsevier, 2014. HARARY F, PALMER E M. Graphical enumeration[M]. Elsevier, 2014.
18.
Zurück zum Zitat GALLIER J H. Logic for computer science: foundations of automatic theorem proving[M]. Courier Dover Publications, 2015. GALLIER J H. Logic for computer science: foundations of automatic theorem proving[M]. Courier Dover Publications, 2015.
19.
Zurück zum Zitat HOPPER P J, BYBEE J L. Frequency and the emergence of linguistic structure[J]. Frequency and the Emergence of Linguistic Structure, 2001: 1–502. HOPPER P J, BYBEE J L. Frequency and the emergence of linguistic structure[J]. Frequency and the Emergence of Linguistic Structure, 2001: 1–502.
20.
Zurück zum Zitat Adali T, Ortega A. Applications of graph theory[J]. Proceedings of the IEEE, 2018, 106(5): 784–786.CrossRef Adali T, Ortega A. Applications of graph theory[J]. Proceedings of the IEEE, 2018, 106(5): 784–786.CrossRef
21.
Zurück zum Zitat Mashaghi A R, Ramezanpour A, Karimipour V. Investigation of a protein complex network[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 41: 113–121.CrossRef Mashaghi A R, Ramezanpour A, Karimipour V. Investigation of a protein complex network[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 41: 113–121.CrossRef
22.
Zurück zum Zitat Shah P, Ashourvan A, Mikhail F, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7), 1955–1972. Shah P, Ashourvan A, Mikhail F, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7), 1955–1972.
23.
Zurück zum Zitat BJORKEN J D, DRELL S D. Relativistic quantum fields[M]. McGraw-Hill, 1965. BJORKEN J D, DRELL S D. Relativistic quantum fields[M]. McGraw-Hill, 1965.
24.
Zurück zum Zitat KUMAR A, KULKARNI G. Evaluating conducting network based transparent electrodes from geometrical considerations[J]. Journal of Applied Physics, 2016, 119(1): 015102.CrossRef KUMAR A, KULKARNI G. Evaluating conducting network based transparent electrodes from geometrical considerations[J]. Journal of Applied Physics, 2016, 119(1): 015102.CrossRef
25.
Zurück zum Zitat ADALI T, ORTEGA A. Applications of graph theory [Scanning the Issue][J]. Proceedings of the IEEE, 2018, 106(5): 784–786.CrossRef ADALI T, ORTEGA A. Applications of graph theory [Scanning the Issue][J]. Proceedings of the IEEE, 2018, 106(5): 784–786.CrossRef
26.
Zurück zum Zitat LEWIS T G. Network science: Theory and applications[M]. John Wiley & Sons, 2011. LEWIS T G. Network science: Theory and applications[M]. John Wiley & Sons, 2011.
27.
Zurück zum Zitat GRANDJEAN M. Social network analysis and visualization: Moreno’s Sociograms revisited[M]. 2015. GRANDJEAN M. Social network analysis and visualization: Moreno’s Sociograms revisited[M]. 2015.
28.
Zurück zum Zitat Kelly S T, Black M A. graphism: An R package for simulating gene expression data from graph structures of biological pathways[J]. bioRxiv, 2020(03). Kelly S T, Black M A. graphism: An R package for simulating gene expression data from graph structures of biological pathways[J]. bioRxiv, 2020(03).
29.
Zurück zum Zitat SHAH P, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7): 1955–1972.CrossRef SHAH P, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7): 1955–1972.CrossRef
30.
Zurück zum Zitat FONSECA G, FONSECA I, GANGBO W. Degree theory in analysis and applications[M]. Oxford University Press, 1995.CrossRef FONSECA G, FONSECA I, GANGBO W. Degree theory in analysis and applications[M]. Oxford University Press, 1995.CrossRef
31.
Zurück zum Zitat WASSERMAN, STANLEY, FAUST, et al. Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences)[M]. Cambridge University Press, 1994. WASSERMAN, STANLEY, FAUST, et al. Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences)[M]. Cambridge University Press, 1994.
32.
Zurück zum Zitat LAWLER G F, LIMIC V. Random walk: a modern introduction[M]. Cambridge University Press, 2010. LAWLER G F, LIMIC V. Random walk: a modern introduction[M]. Cambridge University Press, 2010.
33.
Zurück zum Zitat TUTTE W T. Connectivity in graphs[M]. Connectivity in Graphs. University of Toronto Press, 2019. TUTTE W T. Connectivity in graphs[M]. Connectivity in Graphs. University of Toronto Press, 2019.
34.
Zurück zum Zitat PERFECT H. Applications of Menger’s graph theorem[J]. Journal of Mathematical Analysis and Applications, 1968, 22(1): 96–111.MathSciNetCrossRef PERFECT H. Applications of Menger’s graph theorem[J]. Journal of Mathematical Analysis and Applications, 1968, 22(1): 96–111.MathSciNetCrossRef
35.
Zurück zum Zitat MOHAR B. Some applications of Laplace eigenvalues of graphs[M]. Graph symmetry. Springer, Dordrecht, 1997: 225–275. MOHAR B. Some applications of Laplace eigenvalues of graphs[M]. Graph symmetry. Springer, Dordrecht, 1997: 225–275.
36.
Zurück zum Zitat HORVATH S. Weighted network analysis: applications in genomics and systems biology[M]. Springer Science & Business Media, 2011. HORVATH S. Weighted network analysis: applications in genomics and systems biology[M]. Springer Science & Business Media, 2011.
37.
Zurück zum Zitat PALLA G, FARKAS I J, POLLNER P, et al. Directed network modules[J]. New journal of physics, 2007, 9(6): 186.CrossRef PALLA G, FARKAS I J, POLLNER P, et al. Directed network modules[J]. New journal of physics, 2007, 9(6): 186.CrossRef
38.
Zurück zum Zitat BRETTO A. Hypergraph theory[J]. An introduction. Mathematical Engineering. Cham: Springer, 2013.CrossRef BRETTO A. Hypergraph theory[J]. An introduction. Mathematical Engineering. Cham: Springer, 2013.CrossRef
39.
Zurück zum Zitat PEI S, MAKSE H A. Spreading dynamics in complex networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013(12): P12002.CrossRef PEI S, MAKSE H A. Spreading dynamics in complex networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013(12): P12002.CrossRef
40.
Zurück zum Zitat TAO Z, ZHONGQIAN F, BINGHONG W. Epidemic dynamics on complex networks[J]. Progress in Natural Science, 2006, 16(5): 452–457.MathSciNetCrossRef TAO Z, ZHONGQIAN F, BINGHONG W. Epidemic dynamics on complex networks[J]. Progress in Natural Science, 2006, 16(5): 452–457.MathSciNetCrossRef
41.
Zurück zum Zitat DOERR B, FOUZ M, FRIEDRICH T. Why rumors spread so quickly in social networks[J]. Communications of the ACM, 2012, 55(6): 70–75.CrossRef DOERR B, FOUZ M, FRIEDRICH T. Why rumors spread so quickly in social networks[J]. Communications of the ACM, 2012, 55(6): 70–75.CrossRef
42.
Zurück zum Zitat WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. nature, 1998, 393(6684): 440–442. WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. nature, 1998, 393(6684): 440–442.
43.
Zurück zum Zitat NEWMAN M E J. Models of the small world[J]. Journal of Statistical Physics, 2000, 101(3): 819–841.CrossRef NEWMAN M E J. Models of the small world[J]. Journal of Statistical Physics, 2000, 101(3): 819–841.CrossRef
44.
Zurück zum Zitat BRITTON T, DEIJFEN M, MARTIN-LÖF A. Generating simple random graphs with prescribed degree distribution[J]. Journal of statistical physics, 2006, 124(6): 1377–1397.MathSciNetCrossRef BRITTON T, DEIJFEN M, MARTIN-LÖF A. Generating simple random graphs with prescribed degree distribution[J]. Journal of statistical physics, 2006, 124(6): 1377–1397.MathSciNetCrossRef
45.
46.
Zurück zum Zitat GUIMERA R, AMARAL L. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028): 895–900.CrossRef GUIMERA R, AMARAL L. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028): 895–900.CrossRef
47.
Zurück zum Zitat ALHINDI T, ZHANG Z, RUELENS P, et al. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network[J]. Scientific reports, 2017, 7(1): 1–15.CrossRef ALHINDI T, ZHANG Z, RUELENS P, et al. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network[J]. Scientific reports, 2017, 7(1): 1–15.CrossRef
48.
Zurück zum Zitat MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824–827.CrossRef MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824–827.CrossRef
49.
Zurück zum Zitat KIM J, BATES D G, POSTLETHWAITE I, et al. Robustness analysis of biochemical network models[J]. IEE Proceedings-Systems Biology, 2006, 153(3): 96–104.CrossRef KIM J, BATES D G, POSTLETHWAITE I, et al. Robustness analysis of biochemical network models[J]. IEE Proceedings-Systems Biology, 2006, 153(3): 96–104.CrossRef
50.
Zurück zum Zitat SPORNS O. The human connectome: a complex network[J]. Annals of the New York Academy of Sciences, 2011, 1224(1): 109–125.CrossRef SPORNS O. The human connectome: a complex network[J]. Annals of the New York Academy of Sciences, 2011, 1224(1): 109–125.CrossRef
51.
Zurück zum Zitat Courtesy of the Cajal Institute and the Spanish National Research Council. Courtesy of the Cajal Institute and the Spanish National Research Council.
52.
Zurück zum Zitat POWER J D, COHEN A L, NELSON S M, et al. Functional network organization of the human brain[J]. Neuron, 2011, 72(4): 665–678.CrossRef POWER J D, COHEN A L, NELSON S M, et al. Functional network organization of the human brain[J]. Neuron, 2011, 72(4): 665–678.CrossRef
53.
Zurück zum Zitat POLIS G A, STRONG D R. Food web complexity and community dynamics[J]. The American Naturalist, 1996, 147(5): 813–846.CrossRef POLIS G A, STRONG D R. Food web complexity and community dynamics[J]. The American Naturalist, 1996, 147(5): 813–846.CrossRef
Metadaten
Titel
Complex Networks: Basic Concepts, Construction, and Learning Methods
verfasst von
Qingfeng Chen
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8251-6_3

Premium Partner