Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Neuromuscular Behavior of Asymmetric Gait in Transfemoral Amputees

verfasst von : Rajat Emanuel Singh, Frank Hutchinson, Gannon White, Tarun Edgar Hutchinson

Erschienen in: Motion Analysis of Biological Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The first chapter examines neuromuscular and neuromechanical strategies in individuals with TFA, using the muscle synergy theory. This condition significantly limits movement, even with prosthetic use, necessitating an understanding of the effect of biomechanical constraints on muscle coordination during walking. The current literature lacks insights into whether TFAs exhibit muscle synergy alterations and whether these changes originate from centrally and/or peripherally organized circuits. The chapter addresses these gaps by providing theoretical evidence and proposing associated neural mechanisms for altered muscle synergies, which are crucial for postural stability in TFA. Overall, the chapter underscores the pivotal role of altered muscle synergies in stability maintenance and highlights how increased biomechanical constraints influence afferent drives among TFAs, leading to their alterations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abd, A. T., Singh, R. E., Iqbal, K., & White, G. (2021). A perspective on muscle synergies and different theories related to their adaptation. Biomechanics, 1(2), 253–263.CrossRef Abd, A. T., Singh, R. E., Iqbal, K., & White, G. (2021). A perspective on muscle synergies and different theories related to their adaptation. Biomechanics, 1(2), 253–263.CrossRef
Zurück zum Zitat Bartos, M., Manor, Y., Nadim, F., Marder, E., & Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. Journal of Neuroscience, 19(15), 6650–6660.CrossRef Bartos, M., Manor, Y., Nadim, F., Marder, E., & Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. Journal of Neuroscience, 19(15), 6650–6660.CrossRef
Zurück zum Zitat Bernstein, N. (1966). The co-ordination and regulation of movements. In The co-ordination and regulation of movements. Bernstein, N. (1966). The co-ordination and regulation of movements. In The co-ordination and regulation of movements.
Zurück zum Zitat Biel, A. (2019). Trail guide to movement: Building the body in motion. Books of Discovery. Biel, A. (2019). Trail guide to movement: Building the body in motion. Books of Discovery.
Zurück zum Zitat Bizzi, E., & Cheung, V. C. (2013). The neural origin of muscle synergies. Frontiers in Computational Neuroscience, 7, 51.CrossRef Bizzi, E., & Cheung, V. C. (2013). The neural origin of muscle synergies. Frontiers in Computational Neuroscience, 7, 51.CrossRef
Zurück zum Zitat Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241–254.CrossRef Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241–254.CrossRef
Zurück zum Zitat Brandt, A., & Huang, H. H. (2019). Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation. Journal of Neuroengineering and Rehabilitation, 16(1), 1–11. Brandt, A., & Huang, H. H. (2019). Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation. Journal of Neuroengineering and Rehabilitation, 16(1), 1–11.
Zurück zum Zitat BruceBlaus @ Wikimediacommons. (2023). Foot prosthesis wearing prosthesis above knee. Licensed under CC BY-SA 4.0. BruceBlaus @ Wikimediacommons. (2023). Foot prosthesis wearing prosthesis above knee. Licensed under CC BY-SA 4.0.
Zurück zum Zitat Cazalets, J., Sqalli-Houssaini, Y., & Clarac, F. (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. The Journal of Physiology, 455(1), 187–204.CrossRef Cazalets, J., Sqalli-Houssaini, Y., & Clarac, F. (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. The Journal of Physiology, 455(1), 187–204.CrossRef
Zurück zum Zitat Cheung, V. C., d’Avella, A., & Bizzi, E. (2009). Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. Journal of Neurophysiology, 101(3), 1235–1257.CrossRef Cheung, V. C., d’Avella, A., & Bizzi, E. (2009). Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. Journal of Neurophysiology, 101(3), 1235–1257.CrossRef
Zurück zum Zitat d’Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, 6(3), 300–308.CrossRef d’Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, 6(3), 300–308.CrossRef
Zurück zum Zitat De Marchis, C., Ranaldi, S., Serrao, M., Ranavolo, A., Draicchio, F., Lacquaniti, F., & Conforto, S. (2019). Modular motor control of the sound limb in gait of people with trans-femoral amputation. Journal of Neuroengineering and Rehabilitation, 16, 1–11.CrossRef De Marchis, C., Ranaldi, S., Serrao, M., Ranavolo, A., Draicchio, F., Lacquaniti, F., & Conforto, S. (2019). Modular motor control of the sound limb in gait of people with trans-femoral amputation. Journal of Neuroengineering and Rehabilitation, 16, 1–11.CrossRef
Zurück zum Zitat Dominici, N., Ivanenko, Y. P., Cappellini, G., d’Avella, A., Mondì, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., et al. (2011). Locomotor primitives in newborn babies and their development. Science, 334(6058), 997–999.CrossRef Dominici, N., Ivanenko, Y. P., Cappellini, G., d’Avella, A., Mondì, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., et al. (2011). Locomotor primitives in newborn babies and their development. Science, 334(6058), 997–999.CrossRef
Zurück zum Zitat Duysens, J., & Van de Crommert, H. W. (1998). Neural control of locomotion; part 1: The central pattern generator from cats to humans. Gait & Posture, 7(2), 131–141.CrossRef Duysens, J., & Van de Crommert, H. W. (1998). Neural control of locomotion; part 1: The central pattern generator from cats to humans. Gait & Posture, 7(2), 131–141.CrossRef
Zurück zum Zitat Ebied, A., Kinney-Lang, E., Spyrou, L., & Escudero, J. (2018). Evaluation of matrix factorisation approaches for muscle synergy extraction. Medical Engineering & Physics, 57, 51–60.CrossRef Ebied, A., Kinney-Lang, E., Spyrou, L., & Escudero, J. (2018). Evaluation of matrix factorisation approaches for muscle synergy extraction. Medical Engineering & Physics, 57, 51–60.CrossRef
Zurück zum Zitat Ellis, R. G., Howard, K. C., & Kram, R. (2013). The metabolic and mechanical costs of step time asymmetry in walking. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20122784.CrossRef Ellis, R. G., Howard, K. C., & Kram, R. (2013). The metabolic and mechanical costs of step time asymmetry in walking. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20122784.CrossRef
Zurück zum Zitat Frère, J., & Hug, F. (2012). Between-subject variability of muscle synergies during a complex motor skill. Frontiers in Computational Neuroscience, 6, 99.CrossRef Frère, J., & Hug, F. (2012). Between-subject variability of muscle synergies during a complex motor skill. Frontiers in Computational Neuroscience, 6, 99.CrossRef
Zurück zum Zitat Gaunaurd, I., Gailey, R., Hafner, B. J., Gomez-Marin, O., & Kirk-Sanchez, N. (2011). Postural asymmetries in transfemoral amputees. Prosthetics and Orthotics International, 35(2), 171–180.CrossRef Gaunaurd, I., Gailey, R., Hafner, B. J., Gomez-Marin, O., & Kirk-Sanchez, N. (2011). Postural asymmetries in transfemoral amputees. Prosthetics and Orthotics International, 35(2), 171–180.CrossRef
Zurück zum Zitat George, J., Navale, S. M., Nageeb, E. M., Curtis, G. L., Klika, A. K., Barsoum, W. K., Mont, M. A., & Higuera, C. A. (2018). Etiology of above-knee amputations in the united states: Is periprosthetic joint infection an emerging cause? Clinical Orthopaedics and Related Research, 476(10), 1951.CrossRef George, J., Navale, S. M., Nageeb, E. M., Curtis, G. L., Klika, A. K., Barsoum, W. K., Mont, M. A., & Higuera, C. A. (2018). Etiology of above-knee amputations in the united states: Is periprosthetic joint infection an emerging cause? Clinical Orthopaedics and Related Research, 476(10), 1951.CrossRef
Zurück zum Zitat Gervasio, S., Farina, D., Sinkjær, T., & Mrachacz-Kersting, N. (2013). Crossed reflex reversal during human locomotion. Journal of Neurophysiology, 109(9), 2335–2344.CrossRef Gervasio, S., Farina, D., Sinkjær, T., & Mrachacz-Kersting, N. (2013). Crossed reflex reversal during human locomotion. Journal of Neurophysiology, 109(9), 2335–2344.CrossRef
Zurück zum Zitat Gottschalk, F., & Stills, M. (1994). The biomechanics of trans-femoral amputation. Prosthetics and Orthotics International, 18(1), 12–17.CrossRef Gottschalk, F., & Stills, M. (1994). The biomechanics of trans-femoral amputation. Prosthetics and Orthotics International, 18(1), 12–17.CrossRef
Zurück zum Zitat Grillner, S. (2021). The execution of movement: A spinal affair. Journal of Neurophysiology, 125(2), 693–698.CrossRef Grillner, S. (2021). The execution of movement: A spinal affair. Journal of Neurophysiology, 125(2), 693–698.CrossRef
Zurück zum Zitat Grillner, S., & El Manira, A. (2020). Current principles of motor control, with special reference to vertebrate locomotion. Physiological Reviews, 100(1), 271–320.CrossRef Grillner, S., & El Manira, A. (2020). Current principles of motor control, with special reference to vertebrate locomotion. Physiological Reviews, 100(1), 271–320.CrossRef
Zurück zum Zitat Heckman, E. L., & Doe, C. Q. (2021). Establishment and maintenance of neural circuit architecture. Journal of Neuroscience, 41(6), 1119–1129.CrossRef Heckman, E. L., & Doe, C. Q. (2021). Establishment and maintenance of neural circuit architecture. Journal of Neuroscience, 41(6), 1119–1129.CrossRef
Zurück zum Zitat IJmker, T., Lamoth, C. J., Houdijk, H., van der Woude, L. H., & Beek, P. J. (2014). Postural threat during walking: Effects on energy cost and accompanying gait changes. Journal of Neuroengineering and Rehabilitation, 11(1), 1–10.CrossRef IJmker, T., Lamoth, C. J., Houdijk, H., van der Woude, L. H., & Beek, P. J. (2014). Postural threat during walking: Effects on energy cost and accompanying gait changes. Journal of Neuroengineering and Rehabilitation, 11(1), 1–10.CrossRef
Zurück zum Zitat Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology, 556(1), 267–282.CrossRef Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology, 556(1), 267–282.CrossRef
Zurück zum Zitat Jaegers, S. M., Vos, L. D., Rispens, P., & Hof, A. L. (1993). The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Archives of Physical Medicine and Rehabilitation, 74(5), 521–525.CrossRef Jaegers, S. M., Vos, L. D., Rispens, P., & Hof, A. L. (1993). The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Archives of Physical Medicine and Rehabilitation, 74(5), 521–525.CrossRef
Zurück zum Zitat Jinko Cruz @ Wikimediacommons. (2023). Lego city 10159 lego city airport. Licensed under CC BY 2.0. Jinko Cruz @ Wikimediacommons. (2023). Lego city 10159 lego city airport. Licensed under CC BY 2.0.
Zurück zum Zitat Katz, P. S. (2016). Evolution of central pattern generators and rhythmic behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1685), 20150057.CrossRef Katz, P. S. (2016). Evolution of central pattern generators and rhythmic behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1685), 20150057.CrossRef
Zurück zum Zitat Kerkman, J. N., Bekius, A., Boonstra, T. W., Daffertshofer, A., & Dominici, N. (2020). Muscle synergies and coherence networks reflect different modes of coordination during walking. Frontiers in Physiology, 11, 751.CrossRef Kerkman, J. N., Bekius, A., Boonstra, T. W., Daffertshofer, A., & Dominici, N. (2020). Muscle synergies and coherence networks reflect different modes of coordination during walking. Frontiers in Physiology, 11, 751.CrossRef
Zurück zum Zitat Kieliba, P., Tropea, P., Pirondini, E., Coscia, M., Micera, S., & Artoni, F. (2018). How are muscle synergies affected by electromyography pre-processing? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 882–893.CrossRef Kieliba, P., Tropea, P., Pirondini, E., Coscia, M., Micera, S., & Artoni, F. (2018). How are muscle synergies affected by electromyography pre-processing? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 882–893.CrossRef
Zurück zum Zitat Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., et al. (2014). Consensus paper: The cerebellum’s role in movement and cognition. The Cerebellum, 13, 151–177.CrossRef Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., et al. (2014). Consensus paper: The cerebellum’s role in movement and cognition. The Cerebellum, 13, 151–177.CrossRef
Zurück zum Zitat Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), R986–R996.CrossRef Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), R986–R996.CrossRef
Zurück zum Zitat Maton, B., & Bouisset, S. (1977). The distribution of activity among the muscles of a single group during isometric contraction. European Journal of Applied Physiology and Occupational Physiology, 37(2), 101–109.CrossRef Maton, B., & Bouisset, S. (1977). The distribution of activity among the muscles of a single group during isometric contraction. European Journal of Applied Physiology and Occupational Physiology, 37(2), 101–109.CrossRef
Zurück zum Zitat Mehryar, P., Shourijeh, M. S., Rezaeian, T., Khandan, A. R., Messenger, N., O’Connor, R., Farahmand, F., & Dehghani-Sanij, A. (2020). Differences in muscle synergies between healthy subjects and transfemoral amputees during normal transient-state walking speed. Gait & Posture, 76, 98–103.CrossRef Mehryar, P., Shourijeh, M. S., Rezaeian, T., Khandan, A. R., Messenger, N., O’Connor, R., Farahmand, F., & Dehghani-Sanij, A. (2020). Differences in muscle synergies between healthy subjects and transfemoral amputees during normal transient-state walking speed. Gait & Posture, 76, 98–103.CrossRef
Zurück zum Zitat Miles, G. B., & Sillar, K. T. (2011). Neuromodulation of vertebrate locomotor control networks. Physiology, 26(6), 393–411.CrossRef Miles, G. B., & Sillar, K. T. (2011). Neuromodulation of vertebrate locomotor control networks. Physiology, 26(6), 393–411.CrossRef
Zurück zum Zitat OpenClips @ Wikimediacommons. Lego brick. Licensed under CC0. OpenClips @ Wikimediacommons. Lego brick. Licensed under CC0.
Zurück zum Zitat Rasool, G., Iqbal, K., Bouaynaya, N., & White, G. (2015). Real-time task discrimination for myoelectric control employing task-specific muscle synergies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 98–108.CrossRef Rasool, G., Iqbal, K., Bouaynaya, N., & White, G. (2015). Real-time task discrimination for myoelectric control employing task-specific muscle synergies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 98–108.CrossRef
Zurück zum Zitat Rezer, E., & Moulins, M. (1983). Expression of the crustacean pyloric pattern generator in the intact animal. Journal of Comparative Physiology, 153, 17–28.CrossRef Rezer, E., & Moulins, M. (1983). Expression of the crustacean pyloric pattern generator in the intact animal. Journal of Comparative Physiology, 153, 17–28.CrossRef
Zurück zum Zitat Rimini, D., Agostini, V., & Knaflitz, M. (2017). Intra-subject consistency during locomotion: Similarity in shared and subject-specific muscle synergies. Frontiers in Human Neuroscience, 11, 586.CrossRef Rimini, D., Agostini, V., & Knaflitz, M. (2017). Intra-subject consistency during locomotion: Similarity in shared and subject-specific muscle synergies. Frontiers in Human Neuroscience, 11, 586.CrossRef
Zurück zum Zitat Saltiel, P., Tresch, M. C., & Bizzi, E. (1998). Spinal cord modular organization and rhythm generation: An NMDA iontophoretic study in the frog. Journal of Neurophysiology, 80(5), 2323–2339.CrossRef Saltiel, P., Tresch, M. C., & Bizzi, E. (1998). Spinal cord modular organization and rhythm generation: An NMDA iontophoretic study in the frog. Journal of Neurophysiology, 80(5), 2323–2339.CrossRef
Zurück zum Zitat Sanders, J. E., & Fatone, S. (2011). Residual limb volume change: Systematic review of measurement and management. The Journal of Rehabilitation Research and Development, 48(8), 949–986.CrossRef Sanders, J. E., & Fatone, S. (2011). Residual limb volume change: Systematic review of measurement and management. The Journal of Rehabilitation Research and Development, 48(8), 949–986.CrossRef
Zurück zum Zitat Santuz, A., Ekizos, A., Kunimasa, Y., Kijima, K., Ishikawa, M., & Arampatzis, A. (2020). Lower complexity of motor primitives ensures robust control of high-speed human locomotion. Heliyon, 6(10), e05377.CrossRef Santuz, A., Ekizos, A., Kunimasa, Y., Kijima, K., Ishikawa, M., & Arampatzis, A. (2020). Lower complexity of motor primitives ensures robust control of high-speed human locomotion. Heliyon, 6(10), e05377.CrossRef
Zurück zum Zitat Severini, G., Koenig, A., Adans-Dester, C., Cajigas, I., Cheung, V. C., & Bonato, P. (2020). Robot-driven locomotor perturbations reveal synergy-mediated, context-dependent feedforward and feedback mechanisms of adaptation. Scientific Reports, 10(1), 5104.CrossRef Severini, G., Koenig, A., Adans-Dester, C., Cajigas, I., Cheung, V. C., & Bonato, P. (2020). Robot-driven locomotor perturbations reveal synergy-mediated, context-dependent feedforward and feedback mechanisms of adaptation. Scientific Reports, 10(1), 5104.CrossRef
Zurück zum Zitat Shuman, B. R., Schwartz, M. H., & Steele, K. M. (2017). Electromyography data processing impacts muscle synergies during gait for unimpaired children and children with cerebral palsy. Frontiers in Computational Neuroscience, 11, 50.CrossRef Shuman, B. R., Schwartz, M. H., & Steele, K. M. (2017). Electromyography data processing impacts muscle synergies during gait for unimpaired children and children with cerebral palsy. Frontiers in Computational Neuroscience, 11, 50.CrossRef
Zurück zum Zitat Singh, R. E., Iqbal, K., White, G., & Hutchinson, T. E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018, 3615368.CrossRef Singh, R. E., Iqbal, K., White, G., & Hutchinson, T. E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018, 3615368.CrossRef
Zurück zum Zitat Singh, R. E., Iqbal, K., Ullah, S., Alazzawi, A., & White, G. (2019). Gait phase discrimination during kinematically constrained walking on slackline. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 782–787). IEEE. Singh, R. E., Iqbal, K., Ullah, S., Alazzawi, A., & White, G. (2019). Gait phase discrimination during kinematically constrained walking on slackline. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 782–787). IEEE.
Zurück zum Zitat Singh, R. E., Iqbal, K., & White, G. (2020a). Proficiency-based recruitment of muscle synergies in a highly perturbed walking task (slackline). Engineering Reports, 2(10), e12253.CrossRef Singh, R. E., Iqbal, K., & White, G. (2020a). Proficiency-based recruitment of muscle synergies in a highly perturbed walking task (slackline). Engineering Reports, 2(10), e12253.CrossRef
Zurück zum Zitat Singh, R. E., White, G., Delis, I., & Iqbal, K. (2020b). Alteration of muscle synergy structure while walking under increased postural constraints. Cognitive Computation and Systems, 2(2), 50–56.CrossRef Singh, R. E., White, G., Delis, I., & Iqbal, K. (2020b). Alteration of muscle synergy structure while walking under increased postural constraints. Cognitive Computation and Systems, 2(2), 50–56.CrossRef
Zurück zum Zitat Sombric, C. J., Calvert, J. S., & Torres-Oviedo, G. (2019). Large propulsion demands increase locomotor adaptation at the expense of step length symmetry. Frontiers in Physiology, 10, 60.CrossRef Sombric, C. J., Calvert, J. S., & Torres-Oviedo, G. (2019). Large propulsion demands increase locomotor adaptation at the expense of step length symmetry. Frontiers in Physiology, 10, 60.CrossRef
Zurück zum Zitat Taheri, A., & Karimi, M. T. (2012). Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 17(3), 258. Taheri, A., & Karimi, M. T. (2012). Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 17(3), 258.
Zurück zum Zitat Takei, T., Confais, J., Tomatsu, S., Oya, T., & Seki, K. (2017). Neural basis for hand muscle synergies in the primate spinal cord. Proceedings of the National Academy of Sciences, 114(32), 8643–8648.CrossRef Takei, T., Confais, J., Tomatsu, S., Oya, T., & Seki, K. (2017). Neural basis for hand muscle synergies in the primate spinal cord. Proceedings of the National Academy of Sciences, 114(32), 8643–8648.CrossRef
Zurück zum Zitat Thoroughman, K. A., & Shadmehr, R. (1999). Electromyographic correlates of learning an internal model of reaching movements. Journal of Neuroscience, 19(19), 8573–8588.CrossRef Thoroughman, K. A., & Shadmehr, R. (1999). Electromyographic correlates of learning an internal model of reaching movements. Journal of Neuroscience, 19(19), 8573–8588.CrossRef
Zurück zum Zitat Ting, L., Kautz, S., Brown, D., Van der Loos, H., & Zajac, F. (1998). Bilateral integration of sensorimotor signals during pedaling. Annals of the New York Academy of Sciences, 860(1), 513–516.CrossRef Ting, L., Kautz, S., Brown, D., Van der Loos, H., & Zajac, F. (1998). Bilateral integration of sensorimotor signals during pedaling. Annals of the New York Academy of Sciences, 860(1), 513–516.CrossRef
Zurück zum Zitat Torres-Oviedo, G., & Ting, L. H. (2010). Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. Journal of Neurophysiology, 103(6), 3084–3098.CrossRef Torres-Oviedo, G., & Ting, L. H. (2010). Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. Journal of Neurophysiology, 103(6), 3084–3098.CrossRef
Zurück zum Zitat Tresch, M. C., Cheung, V. C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 2199–2212.CrossRef Tresch, M. C., Cheung, V. C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 2199–2212.CrossRef
Zurück zum Zitat Vrieling, A. H., Van Keeken, H., Schoppen, T., Otten, E., Halbertsma, J., Hof, A., & Postema, K. (2008). Gait initiation in lower limb amputees. Gait & Posture, 27(3), 423–430.CrossRef Vrieling, A. H., Van Keeken, H., Schoppen, T., Otten, E., Halbertsma, J., Hof, A., & Postema, K. (2008). Gait initiation in lower limb amputees. Gait & Posture, 27(3), 423–430.CrossRef
Zurück zum Zitat Wentink, E. C., Prinsen, E. C., Rietman, J. S., & Veltink, P. H. (2013). Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. Journal of Neuroengineering and Rehabilitation, 10(1), 1–11.CrossRef Wentink, E. C., Prinsen, E. C., Rietman, J. S., & Veltink, P. H. (2013). Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. Journal of Neuroengineering and Rehabilitation, 10(1), 1–11.CrossRef
Zurück zum Zitat Yang, J. F., & Stein, R. B. (1990). Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology, 63(5), 1109–1117.CrossRef Yang, J. F., & Stein, R. B. (1990). Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology, 63(5), 1109–1117.CrossRef
Zurück zum Zitat Yang, Q., Logan, D., & Giszter, S. F. (2019). Motor primitives are determined in early development and are then robustly conserved into adulthood. Proceedings of the National Academy of Sciences, 116(24), 12025–12034.CrossRef Yang, Q., Logan, D., & Giszter, S. F. (2019). Motor primitives are determined in early development and are then robustly conserved into adulthood. Proceedings of the National Academy of Sciences, 116(24), 12025–12034.CrossRef
Zurück zum Zitat Yokoyama, H., Kaneko, N., Ogawa, T., Kawashima, N., Watanabe, K., & Nakazawa, K. (2019). Cortical correlates of locomotor muscle synergy activation in humans: An electroencephalographic decoding study. IScience, 15, 623–639.CrossRef Yokoyama, H., Kaneko, N., Ogawa, T., Kawashima, N., Watanabe, K., & Nakazawa, K. (2019). Cortical correlates of locomotor muscle synergy activation in humans: An electroencephalographic decoding study. IScience, 15, 623–639.CrossRef
Zurück zum Zitat Zehr, E. P., Balter, J. E., Ferris, D. P., Hundza, S. R., Loadman, P. M., & Stoloff, R. H. (2007). Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. The Journal of Physiology, 582(1), 209–227.CrossRef Zehr, E. P., Balter, J. E., Ferris, D. P., Hundza, S. R., Loadman, P. M., & Stoloff, R. H. (2007). Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. The Journal of Physiology, 582(1), 209–227.CrossRef
Zurück zum Zitat Zehr, E. P., Barss, T. S., Dragert, K., Frigon, A., Vasudevan, E. V., Haridas, C., Hundza, S., Kaupp, C., Klarner, T., Klimstra, M., et al. (2016). Neuromechanical interactions between the limbs during human locomotion: An evolutionary perspective with translation to rehabilitation. Experimental Brain Research, 234, 3059–3081.CrossRef Zehr, E. P., Barss, T. S., Dragert, K., Frigon, A., Vasudevan, E. V., Haridas, C., Hundza, S., Kaupp, C., Klarner, T., Klimstra, M., et al. (2016). Neuromechanical interactions between the limbs during human locomotion: An evolutionary perspective with translation to rehabilitation. Experimental Brain Research, 234, 3059–3081.CrossRef
Zurück zum Zitat Zhao, H., Horn, J., Reher, J., Paredes, V., & Ames, A. D. (2017). First steps toward translating robotic walking to prostheses: A nonlinear optimization based control approach. Autonomous Robots, 41, 725–742.CrossRef Zhao, H., Horn, J., Reher, J., Paredes, V., & Ames, A. D. (2017). First steps toward translating robotic walking to prostheses: A nonlinear optimization based control approach. Autonomous Robots, 41, 725–742.CrossRef
Zurück zum Zitat Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the united states: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429.CrossRef Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the united states: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429.CrossRef
Metadaten
Titel
Neuromuscular Behavior of Asymmetric Gait in Transfemoral Amputees
verfasst von
Rajat Emanuel Singh
Frank Hutchinson
Gannon White
Tarun Edgar Hutchinson
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-52977-1_2

Neuer Inhalt