Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Fundamental Approaches of Studying the Neural Origin of Muscle Synergy

verfasst von : Abir Samanta, Sukanti Bhattacharyya

Erschienen in: Motion Analysis of Biological Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on the neural basis of muscle synergy in the context of motor neuroscience. It discusses the historical significance of the concept and the contributions of both spinal circuitry and supraspinal regions in controlling muscle synergies. Despite substantial evidence and advancements in muscle synergy theory, alternate theoretical and methodological viewpoints in this field have also emerged, such as the UCM hypothesis and the EP hypothesis. The chapter also highlights the work of Nikolai Aleksandrovich Bernstein, a pioneer in muscle synergy research, and explores his extensive model that relates human coordination, kinematic degrees of freedom, and motor redundancy. The chapter further examines the influence of factors like aging, fatigue, and sports training on muscle synergies and introduces three popular dimensionality reduction techniques used in identifying patterns within muscle synergies. These techniques have applications in diverse fields such as spinal transection, stroke rehabilitation, gesture recognition, bio-robotics, and more.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abd, A. T., Singh, R. E., Iqbal, K., & White, G. (2021). A perspective on muscle synergies and different theories related to their adaptation. Biomechanics, 1(2), 253–263.CrossRef Abd, A. T., Singh, R. E., Iqbal, K., & White, G. (2021). A perspective on muscle synergies and different theories related to their adaptation. Biomechanics, 1(2), 253–263.CrossRef
Zurück zum Zitat Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776–1782.CrossRef Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776–1782.CrossRef
Zurück zum Zitat Alessandro, C., Delis, I., Nori, F., Panzeri, S., & Berret, B. (2013). Muscle synergies in neuroscience and robotics: From input-space to task-space perspectives. Frontiers in Computational Neuroscience, 7, 43.CrossRef Alessandro, C., Delis, I., Nori, F., Panzeri, S., & Berret, B. (2013). Muscle synergies in neuroscience and robotics: From input-space to task-space perspectives. Frontiers in Computational Neuroscience, 7, 43.CrossRef
Zurück zum Zitat Alibeji, N. A., Kirsch, N. A., & Sharma, N. (2015). A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis. Frontiers in Bioengineering and Biotechnology, 3, 203.CrossRef Alibeji, N. A., Kirsch, N. A., & Sharma, N. (2015). A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis. Frontiers in Bioengineering and Biotechnology, 3, 203.CrossRef
Zurück zum Zitat Banks, C. L., Pai, M. M., McGuirk, T. E., Fregly, B. J., & Patten, C. (2017). Methodological choices in muscle synergy analysis impact differentiation of physiological characteristics following stroke. Frontiers in Computational Neuroscience, 11, 78.CrossRef Banks, C. L., Pai, M. M., McGuirk, T. E., Fregly, B. J., & Patten, C. (2017). Methodological choices in muscle synergy analysis impact differentiation of physiological characteristics following stroke. Frontiers in Computational Neuroscience, 11, 78.CrossRef
Zurück zum Zitat Barradas, V. R., Kutch, J. J., Kawase, T., Koike, Y., & Schweighofer, N. (2020). When 90% of the variance is not enough: Residual EMG from muscle synergy extraction influences task performance. Journal of Neurophysiology, 123(6), 2180–2190.CrossRef Barradas, V. R., Kutch, J. J., Kawase, T., Koike, Y., & Schweighofer, N. (2020). When 90% of the variance is not enough: Residual EMG from muscle synergy extraction influences task performance. Journal of Neurophysiology, 123(6), 2180–2190.CrossRef
Zurück zum Zitat Bernstein, N. A. (1935). The problem of interrelation between coordination and localization. Archives of Biological Sciences, 38, 1–35. Bernstein, N. A. (1935). The problem of interrelation between coordination and localization. Archives of Biological Sciences, 38, 1–35.
Zurück zum Zitat Bernstein, N. (1966). The co-ordination and regulation of movements. In The co-ordination and regulation of movements. Bernstein, N. (1966). The co-ordination and regulation of movements. In The co-ordination and regulation of movements.
Zurück zum Zitat Bernstein, N. A. (2014). Dexterity and its development. Psychology Press.CrossRef Bernstein, N. A. (2014). Dexterity and its development. Psychology Press.CrossRef
Zurück zum Zitat Biryukova, E., & Sirotkina, I. (2020). Forward to bernstein: Movement complexity as a new frontier. Frontiers in Neuroscience, 14, 553.CrossRef Biryukova, E., & Sirotkina, I. (2020). Forward to bernstein: Movement complexity as a new frontier. Frontiers in Neuroscience, 14, 553.CrossRef
Zurück zum Zitat Bizzi, E., & Ajemian, R. (2020). From motor planning to execution: A sensorimotor loop perspective. Journal of Neurophysiology, 124(6), 1815–1823.CrossRef Bizzi, E., & Ajemian, R. (2020). From motor planning to execution: A sensorimotor loop perspective. Journal of Neurophysiology, 124(6), 1815–1823.CrossRef
Zurück zum Zitat Bizzi, E., & Cheung, V. C. (2013). The neural origin of muscle synergies. Frontiers in Computational Neuroscience, 7, 51.CrossRef Bizzi, E., & Cheung, V. C. (2013). The neural origin of muscle synergies. Frontiers in Computational Neuroscience, 7, 51.CrossRef
Zurück zum Zitat Bruton, M., & O’Dwyer, N. (2018). Synergies in coordination: A comprehensive overview of neural, computational, and behavioral approaches. Journal of Neurophysiology, 120(6), 2761–2774.CrossRef Bruton, M., & O’Dwyer, N. (2018). Synergies in coordination: A comprehensive overview of neural, computational, and behavioral approaches. Journal of Neurophysiology, 120(6), 2761–2774.CrossRef
Zurück zum Zitat Carson, R. G. (2006). Changes in muscle coordination with training. Journal of Applied Physiology, 101(5), 1506–1513.CrossRef Carson, R. G. (2006). Changes in muscle coordination with training. Journal of Applied Physiology, 101(5), 1506–1513.CrossRef
Zurück zum Zitat Carson, R. G. (2018). Get a grip: Individual variations in grip strength are a marker of brain health. Neurobiology of Aging, 71, 189–222.CrossRef Carson, R. G. (2018). Get a grip: Individual variations in grip strength are a marker of brain health. Neurobiology of Aging, 71, 189–222.CrossRef
Zurück zum Zitat Cheung, V. C., & Seki, K. (2021). Approaches to revealing the neural basis of muscle synergies: A review and a critique. Journal of Neurophysiology, 125(5), 1580–1597.CrossRef Cheung, V. C., & Seki, K. (2021). Approaches to revealing the neural basis of muscle synergies: A review and a critique. Journal of Neurophysiology, 125(5), 1580–1597.CrossRef
Zurück zum Zitat Clark, B. C., & Carson, R. G. (2021). Sarcopenia and neuroscience: Learning to communicate. The Journals of Gerontology: Series A, 76(10), 1882–1890. Clark, B. C., & Carson, R. G. (2021). Sarcopenia and neuroscience: Learning to communicate. The Journals of Gerontology: Series A, 76(10), 1882–1890.
Zurück zum Zitat Daffertshofer, A., Lamoth, C. J., Meijer, O. G., & Beek, P. J. (2004). Pca in studying coordination and variability: A tutorial. Clinical Biomechanics, 19(4), 415–428.CrossRef Daffertshofer, A., Lamoth, C. J., Meijer, O. G., & Beek, P. J. (2004). Pca in studying coordination and variability: A tutorial. Clinical Biomechanics, 19(4), 415–428.CrossRef
Zurück zum Zitat Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., & Aszmann, O. C. (2014). The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 797–809.CrossRef Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., & Aszmann, O. C. (2014). The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 797–809.CrossRef
Zurück zum Zitat Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis (\(\lambda \) model) for motor control. Journal of Motor Behavior, 18(1), 17–54.CrossRef Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis (\(\lambda \) model) for motor control. Journal of Motor Behavior, 18(1), 17–54.CrossRef
Zurück zum Zitat Gelfand, I. M., & Tsetlin, M. (1966). On mathematical modeling of the mechanisms of the center nervous system. Models of the structural-functional organization of certain biological systems (pp. 9–26). Gelfand, I. M., & Tsetlin, M. (1966). On mathematical modeling of the mechanisms of the center nervous system. Models of the structural-functional organization of certain biological systems (pp. 9–26).
Zurück zum Zitat Hajiloo, B., Anbarian, M., Esmaeili, H., & Mirzapour, M. (2020). The effects of fatigue on synergy of selected lower limb muscles during running. Journal of Biomechanics, 103, 109692.CrossRef Hajiloo, B., Anbarian, M., Esmaeili, H., & Mirzapour, M. (2020). The effects of fatigue on synergy of selected lower limb muscles during running. Journal of Biomechanics, 103, 109692.CrossRef
Zurück zum Zitat Hug, F., Avrillon, S., Ibáñez, J., & Farina, D. (2023). Common synaptic input, synergies and size principle: Control of spinal motor neurons for movement generation. The Journal of Physiology, 601(1), 11–20.CrossRef Hug, F., Avrillon, S., Ibáñez, J., & Farina, D. (2023). Common synaptic input, synergies and size principle: Control of spinal motor neurons for movement generation. The Journal of Physiology, 601(1), 11–20.CrossRef
Zurück zum Zitat Ison, M., & Artemiadis, P. (2014). The role of muscle synergies in myoelectric control: Trends and challenges for simultaneous multifunction control. Journal of Neural Engineering, 11(5), 051001.CrossRef Ison, M., & Artemiadis, P. (2014). The role of muscle synergies in myoelectric control: Trends and challenges for simultaneous multifunction control. Journal of Neural Engineering, 11(5), 051001.CrossRef
Zurück zum Zitat Israely, S., Leisman, G., & Carmeli, E. (2018). Neuromuscular synergies in motor control in normal and poststroke individuals. Reviews in the Neurosciences, 29(6), 593–612.CrossRef Israely, S., Leisman, G., & Carmeli, E. (2018). Neuromuscular synergies in motor control in normal and poststroke individuals. Reviews in the Neurosciences, 29(6), 593–612.CrossRef
Zurück zum Zitat Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: A review. Complex & Intelligent Systems, 8(3), 2663–2693.CrossRef Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: A review. Complex & Intelligent Systems, 8(3), 2663–2693.CrossRef
Zurück zum Zitat Kargo, W. J., & Nitz, D. A. (2003). Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. Journal of Neuroscience, 23(35), 11255–11269.CrossRef Kargo, W. J., & Nitz, D. A. (2003). Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. Journal of Neuroscience, 23(35), 11255–11269.CrossRef
Zurück zum Zitat Kouzaki, M., & Shinohara, M. (2006). The frequency of alternate muscle activity is associated with the attenuation in muscle fatigue. Journal of Applied Physiology, 101(3), 715–720.CrossRef Kouzaki, M., & Shinohara, M. (2006). The frequency of alternate muscle activity is associated with the attenuation in muscle fatigue. Journal of Applied Physiology, 101(3), 715–720.CrossRef
Zurück zum Zitat Kumar, D. K., Jelfs, B., Sui, X., & Arjunan, S. P. (2019). Prosthetic hand control: A multidisciplinary review to identify strengths, shortcomings, and the future. Biomedical Signal Processing and Control, 53, 101588.CrossRef Kumar, D. K., Jelfs, B., Sui, X., & Arjunan, S. P. (2019). Prosthetic hand control: A multidisciplinary review to identify strengths, shortcomings, and the future. Biomedical Signal Processing and Control, 53, 101588.CrossRef
Zurück zum Zitat Lambert-Shirzad, N., & Van der Loos, H. M. (2017). On identifying kinematic and muscle synergies: A comparison of matrix factorization methods using experimental data from the healthy population. Journal of Neurophysiology, 117(1), 290–302.CrossRef Lambert-Shirzad, N., & Van der Loos, H. M. (2017). On identifying kinematic and muscle synergies: A comparison of matrix factorization methods using experimental data from the healthy population. Journal of Neurophysiology, 117(1), 290–302.CrossRef
Zurück zum Zitat Latash, M. L. (2020). Bernstein’s construction of movements: The original text and commentaries.CrossRef Latash, M. L. (2020). Bernstein’s construction of movements: The original text and commentaries.CrossRef
Zurück zum Zitat Latash, M. L. (2021). One more time about motor (and non-motor) synergies. Experimental Brain Research, 239(10), 2951–2967.CrossRef Latash, M. L. (2021). One more time about motor (and non-motor) synergies. Experimental Brain Research, 239(10), 2951–2967.CrossRef
Zurück zum Zitat Latash, M. L., Scholz, J. P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276–308.CrossRef Latash, M. L., Scholz, J. P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276–308.CrossRef
Zurück zum Zitat Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.CrossRef Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.CrossRef
Zurück zum Zitat Levine, A. J., Hinckley, C. A., Hilde, K. L., Driscoll, S. P., Poon, T. H., Montgomery, J. M., & Pfaff, S. L. (2014). Identification of a cellular node for motor control pathways. Nature Neuroscience, 17(4), 586–593.CrossRef Levine, A. J., Hinckley, C. A., Hilde, K. L., Driscoll, S. P., Poon, T. H., Montgomery, J. M., & Pfaff, S. L. (2014). Identification of a cellular node for motor control pathways. Nature Neuroscience, 17(4), 586–593.CrossRef
Zurück zum Zitat Ma, Y., Shi, C., Xu, J., Ye, S., Zhou, H., & Zuo, G. (2021). A novel muscle synergy extraction method used for motor function evaluation of stroke patients: A pilot study. Sensors, 21(11), 3833.CrossRef Ma, Y., Shi, C., Xu, J., Ye, S., Zhou, H., & Zuo, G. (2021). A novel muscle synergy extraction method used for motor function evaluation of stroke patients: A pilot study. Sensors, 21(11), 3833.CrossRef
Zurück zum Zitat Mazurek, K. A., Berger, M., Bollu, T., Chowdhury, R. H., Elangovan, N., Kuling, I. A., & Sohn, M. H. (2018). Highlights from the 28th annual meeting of the society for the neural control of movement. Journal of Neurophysiology, 120(4), 1671–1679.CrossRef Mazurek, K. A., Berger, M., Bollu, T., Chowdhury, R. H., Elangovan, N., Kuling, I. A., & Sohn, M. H. (2018). Highlights from the 28th annual meeting of the society for the neural control of movement. Journal of Neurophysiology, 120(4), 1671–1679.CrossRef
Zurück zum Zitat McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 339–364.CrossRef McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 339–364.CrossRef
Zurück zum Zitat Meijer, O. G., & Bongaardt, R. (1998). Bernstein’s last paper: The immediate tasks of neurophysiology in the light of the modern theory of biological activity. Motor Control, 2(1), 2–9.CrossRef Meijer, O. G., & Bongaardt, R. (1998). Bernstein’s last paper: The immediate tasks of neurophysiology in the light of the modern theory of biological activity. Motor Control, 2(1), 2–9.CrossRef
Zurück zum Zitat Monaco, V., Ghionzoli, A., & Micera, S. (2010). Age-related modifications of muscle synergies and spinal cord activity during locomotion. Journal of Neurophysiology, 104(4), 2092–2102.CrossRef Monaco, V., Ghionzoli, A., & Micera, S. (2010). Age-related modifications of muscle synergies and spinal cord activity during locomotion. Journal of Neurophysiology, 104(4), 2092–2102.CrossRef
Zurück zum Zitat Naik, G. R., Selvan, S. E., Gobbo, M., Acharyya, A., & Nguyen, H. T. (2016). Principal component analysis applied to surface electromyography: A comprehensive review. IEEE Access, 4, 4025–4037.CrossRef Naik, G. R., Selvan, S. E., Gobbo, M., Acharyya, A., & Nguyen, H. T. (2016). Principal component analysis applied to surface electromyography: A comprehensive review. IEEE Access, 4, 4025–4037.CrossRef
Zurück zum Zitat Neilson, P. D. (1993). The problem of redundancy in movement control: The adaptive model theory approach. Psychological Research, 55(2), 99–106.CrossRef Neilson, P. D. (1993). The problem of redundancy in movement control: The adaptive model theory approach. Psychological Research, 55(2), 99–106.CrossRef
Zurück zum Zitat Neilson, P. D., & Neilson, M. D. (2005). An overview of adaptive model theory: Solving the problems of redundancy, resources, and nonlinear interactions in human movement control. Journal of Neural Engineering, 2(3), S279.MathSciNetCrossRef Neilson, P. D., & Neilson, M. D. (2005). An overview of adaptive model theory: Solving the problems of redundancy, resources, and nonlinear interactions in human movement control. Journal of Neural Engineering, 2(3), S279.MathSciNetCrossRef
Zurück zum Zitat Profeta, V. L., & Turvey, M. T. (2018). Bernstein’s levels of movement construction: A contemporary perspective. Human Movement Science, 57, 111–133.CrossRef Profeta, V. L., & Turvey, M. T. (2018). Bernstein’s levels of movement construction: A contemporary perspective. Human Movement Science, 57, 111–133.CrossRef
Zurück zum Zitat Rabbi, M. F., Pizzolato, C., Lloyd, D. G., Carty, C. P., Devaprakash, D., & Diamond, L. E. (2020). Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running. Scientific Reports, 10(1), 8266.CrossRef Rabbi, M. F., Pizzolato, C., Lloyd, D. G., Carty, C. P., Devaprakash, D., & Diamond, L. E. (2020). Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running. Scientific Reports, 10(1), 8266.CrossRef
Zurück zum Zitat Rana, M., Yani, M. S., Asavasopon, S., Fisher, B. E., & Kutch, J. J. (2015). Brain connectivity associated with muscle synergies in humans. Journal of Neuroscience, 35(44), 14708–14716.CrossRef Rana, M., Yani, M. S., Asavasopon, S., Fisher, B. E., & Kutch, J. J. (2015). Brain connectivity associated with muscle synergies in humans. Journal of Neuroscience, 35(44), 14708–14716.CrossRef
Zurück zum Zitat Ruffieux, J., Keller, M., Lauber, B., & Taube, W. (2015). Changes in standing and walking performance under dual-task conditions across the lifespan. Sports Medicine, 45, 1739–1758.CrossRef Ruffieux, J., Keller, M., Lauber, B., & Taube, W. (2015). Changes in standing and walking performance under dual-task conditions across the lifespan. Sports Medicine, 45, 1739–1758.CrossRef
Zurück zum Zitat Safavynia, S. A., & Ting, L. H. (2012). Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations. Journal of Neurophysiology, 107(1), 159–177.CrossRef Safavynia, S. A., & Ting, L. H. (2012). Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations. Journal of Neurophysiology, 107(1), 159–177.CrossRef
Zurück zum Zitat Sawers, A., Allen, J. L., & Ting, L. H. (2015). Long-term training modifies the modular structure and organization of walking balance control. Journal of Neurophysiology, 114(6), 3359–3373.CrossRef Sawers, A., Allen, J. L., & Ting, L. H. (2015). Long-term training modifies the modular structure and organization of walking balance control. Journal of Neurophysiology, 114(6), 3359–3373.CrossRef
Zurück zum Zitat Scano, A., Mira, R. M., & d’Avella, A. (2022). Mixed matrix factorization: A novel algorithm for the extraction of kinematic-muscular synergies. Journal of Neurophysiology, 127(2), 529–547.CrossRef Scano, A., Mira, R. M., & d’Avella, A. (2022). Mixed matrix factorization: A novel algorithm for the extraction of kinematic-muscular synergies. Journal of Neurophysiology, 127(2), 529–547.CrossRef
Zurück zum Zitat Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126, 289–306.CrossRef Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126, 289–306.CrossRef
Zurück zum Zitat Singh, T., Varadhan, S., Zatsiorsky, V. M., & Latash, M. L. (2010). Adaptive increase in force variance during fatigue in tasks with low redundancy. Neuroscience Letters, 485(3), 204–207.CrossRef Singh, T., Varadhan, S., Zatsiorsky, V. M., & Latash, M. L. (2010). Adaptive increase in force variance during fatigue in tasks with low redundancy. Neuroscience Letters, 485(3), 204–207.CrossRef
Zurück zum Zitat Singh, T., Zatsiorsky, V. M., & Latash, M. L. (2012). Effects of fatigue on synergies in a hierarchical system. Human Movement Science, 31(6), 1379–1398.CrossRef Singh, T., Zatsiorsky, V. M., & Latash, M. L. (2012). Effects of fatigue on synergies in a hierarchical system. Human Movement Science, 31(6), 1379–1398.CrossRef
Zurück zum Zitat Singh, T., Zatsiorsky, V. M., & Latash, M. L. (2013). Contrasting effects of fatigue on multifinger coordination in young and older adults. Journal of Applied Physiology, 115(4), 456–467.CrossRef Singh, T., Zatsiorsky, V. M., & Latash, M. L. (2013). Contrasting effects of fatigue on multifinger coordination in young and older adults. Journal of Applied Physiology, 115(4), 456–467.CrossRef
Zurück zum Zitat Singh, R. E., Iqbal, K., White, G., & Hutchinson, T. E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018, 3615368.CrossRef Singh, R. E., Iqbal, K., White, G., & Hutchinson, T. E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018, 3615368.CrossRef
Zurück zum Zitat Singh, R. E., White, G., Delis, I., & Iqbal, K. (2020). Alteration of muscle synergy structure while walking under increased postural constraints. Cognitive Computation and Systems, 2(2), 50–56.CrossRef Singh, R. E., White, G., Delis, I., & Iqbal, K. (2020). Alteration of muscle synergy structure while walking under increased postural constraints. Cognitive Computation and Systems, 2(2), 50–56.CrossRef
Zurück zum Zitat Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.CrossRef Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.CrossRef
Zurück zum Zitat Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.CrossRef Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.CrossRef
Zurück zum Zitat Tresch, M. C., Cheung, V. C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 2199–2212.CrossRef Tresch, M. C., Cheung, V. C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 2199–2212.CrossRef
Zurück zum Zitat Turpin, N. A., Uriac, S., & Dalleau, G. (2021). How to improve the muscle synergy analysis methodology? European Journal of Applied Physiology, 121(4), 1009–1025.CrossRef Turpin, N. A., Uriac, S., & Dalleau, G. (2021). How to improve the muscle synergy analysis methodology? European Journal of Applied Physiology, 121(4), 1009–1025.CrossRef
Zurück zum Zitat van Wijk, B. C., Beek, P. J., & Daffertshofer, A. (2012). Neural synchrony within the motor system: What have we learned so far? Frontiers in Human Neuroscience, 6, 252. van Wijk, B. C., Beek, P. J., & Daffertshofer, A. (2012). Neural synchrony within the motor system: What have we learned so far? Frontiers in Human Neuroscience, 6, 252.
Zurück zum Zitat Vidal, R., Ma, Y., Sastry, S. S., Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. Springer.CrossRef Vidal, R., Ma, Y., Sastry, S. S., Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. Springer.CrossRef
Zurück zum Zitat Whatley, M. (2022). Measures of variability. In Introduction to quantitative analysis for international educators (pp. 23–31). Springer. Whatley, M. (2022). Measures of variability. In Introduction to quantitative analysis for international educators (pp. 23–31). Springer.
Zurück zum Zitat Yokoyama, H., Kaneko, N., Ogawa, T., Kawashima, N., Watanabe, K., & Nakazawa, K. (2019). Cortical correlates of locomotor muscle synergy activation in humans: An electroencephalographic decoding study. IScience, 15, 623–639.CrossRef Yokoyama, H., Kaneko, N., Ogawa, T., Kawashima, N., Watanabe, K., & Nakazawa, K. (2019). Cortical correlates of locomotor muscle synergy activation in humans: An electroencephalographic decoding study. IScience, 15, 623–639.CrossRef
Zurück zum Zitat Zandvoort, C. S., Daffertshofer, A., & Dominici, N. (2022). Cortical contributions to locomotor primitives in toddlers and adults. Iscience, 25(10), 105229.CrossRef Zandvoort, C. S., Daffertshofer, A., & Dominici, N. (2022). Cortical contributions to locomotor primitives in toddlers and adults. Iscience, 25(10), 105229.CrossRef
Zurück zum Zitat Zhao, K., Wen, H., Zhang, Z., Atzori, M., Müller, H., Xie, Z., & Scano, A. (2022). Evaluation of methods for the extraction of spatial muscle synergies. Frontiers in Neuroscience, 16, 732156.CrossRef Zhao, K., Wen, H., Zhang, Z., Atzori, M., Müller, H., Xie, Z., & Scano, A. (2022). Evaluation of methods for the extraction of spatial muscle synergies. Frontiers in Neuroscience, 16, 732156.CrossRef
Metadaten
Titel
Fundamental Approaches of Studying the Neural Origin of Muscle Synergy
verfasst von
Abir Samanta
Sukanti Bhattacharyya
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-52977-1_3

Neuer Inhalt