Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Simulation Model for Investigation on Recurrent Feedback Inhibition By Renshaw Cells

verfasst von : Sarah Ansari

Erschienen in: Motion Analysis of Biological Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses Renshaw cells, which are part of the recurrent feedback inhibition loop located in the spinal cord’s ventral horn. This loop regulates the firing of motoneuron signals for muscle contraction. The chapter outlines the various state feedback output responses required to lessen tremors and enhance the impacted population’s force-muscle activation response. Simulation model investigation reveals such frequency responses. Renshaw cells orchestrate the recurrent feedback inhibition by synchronizing oscillations and strengthening muscular action at frequencies over 20 Hz. They also eliminate oscillations and tremors in the muscles at about 10 Hz. This emphasizes how beneficial Renshaw cells are at reducing physiological tremors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adam, D., Windhorst, U., & Inbar, G. (1978). The effects of recurrent inhibition on the cross-correlated firing patterns of motoneurones (and their relation to signal transmission in the spinal cord-muscle channel). Biological Cybernetics, 29, 229–235.CrossRef Adam, D., Windhorst, U., & Inbar, G. (1978). The effects of recurrent inhibition on the cross-correlated firing patterns of motoneurones (and their relation to signal transmission in the spinal cord-muscle channel). Biological Cybernetics, 29, 229–235.CrossRef
Zurück zum Zitat Altman, J., & Bayer, S. A. (2001). Development of the human spinal cord: An interpretation based on experimental studies in animals. Oxford University Press. Altman, J., & Bayer, S. A. (2001). Development of the human spinal cord: An interpretation based on experimental studies in animals. Oxford University Press.
Zurück zum Zitat Baker, S., & Lemon, R. (1998). Computer simulation of post-spike facilitation in spike-triggered averages of rectified EMG. Journal of Neurophysiology, 80(3), 1391–1406.CrossRef Baker, S., & Lemon, R. (1998). Computer simulation of post-spike facilitation in spike-triggered averages of rectified EMG. Journal of Neurophysiology, 80(3), 1391–1406.CrossRef
Zurück zum Zitat Bareyre, F. M., Kerschensteiner, M., Misgeld, T., & Sanes, J. R. (2005). Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nature Medicine, 11(12), 1355–1360.CrossRef Bareyre, F. M., Kerschensteiner, M., Misgeld, T., & Sanes, J. R. (2005). Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nature Medicine, 11(12), 1355–1360.CrossRef
Zurück zum Zitat Brownstone, R. M., & Bui, T. V. (2010). Spinal interneurons providing input to the final common path during locomotion. Progress in Brain Research, 187, 81–95.CrossRef Brownstone, R. M., & Bui, T. V. (2010). Spinal interneurons providing input to the final common path during locomotion. Progress in Brain Research, 187, 81–95.CrossRef
Zurück zum Zitat Chen, H.-H., & Frank, E. (1999). Development and specification of muscle sensory neurons. Current Opinion in Neurobiology, 9(4), 405–409.CrossRef Chen, H.-H., & Frank, E. (1999). Development and specification of muscle sensory neurons. Current Opinion in Neurobiology, 9(4), 405–409.CrossRef
Zurück zum Zitat Chen, W. V., Alvarez, F. J., Lefebvre, J. L., Friedman, B., Nwakeze, C., Geiman, E., Smith, C., Thu, C. A., Tapia, J. C., Tasic, B., et al. (2012). Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron, 75(3), 402–409.CrossRef Chen, W. V., Alvarez, F. J., Lefebvre, J. L., Friedman, B., Nwakeze, C., Geiman, E., Smith, C., Thu, C. A., Tapia, J. C., Tasic, B., et al. (2012). Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron, 75(3), 402–409.CrossRef
Zurück zum Zitat Curtis, D., Game, C., Lodge, D., & McCulloch, R. (1976). A pharmacological study of Renshaw cell inhibition. The Journal of Physiology, 258(1), 227–242.CrossRef Curtis, D., Game, C., Lodge, D., & McCulloch, R. (1976). A pharmacological study of Renshaw cell inhibition. The Journal of Physiology, 258(1), 227–242.CrossRef
Zurück zum Zitat Eccles, J., Eccles, R. M., Iggo, A., & Ito, M. (1961). Distribution of recurrent inhibition among motoneurones. The Journal of Physiology, 159(3), 479.CrossRef Eccles, J., Eccles, R. M., Iggo, A., & Ito, M. (1961). Distribution of recurrent inhibition among motoneurones. The Journal of Physiology, 159(3), 479.CrossRef
Zurück zum Zitat Eccles, J. C., Fatt, P., & Koketsu, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. The Journal of Physiology, 126(3), 524.CrossRef Eccles, J. C., Fatt, P., & Koketsu, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. The Journal of Physiology, 126(3), 524.CrossRef
Zurück zum Zitat Elble, R., & Koller, W. (1990). Unusual forms of tremor. In Tremor, (pp. 154–157). The Johns Hopkins University Press, Baltimore. Elble, R., & Koller, W. (1990). Unusual forms of tremor. In Tremor, (pp. 154–157). The Johns Hopkins University Press, Baltimore.
Zurück zum Zitat Elble, R. J., & Randall, J. E. (1976). Motor-unit activity responsible for 8-to 12-Hz component of human physiological finger tremor. Journal of Neurophysiology, 39(2), 370–383.CrossRef Elble, R. J., & Randall, J. E. (1976). Motor-unit activity responsible for 8-to 12-Hz component of human physiological finger tremor. Journal of Neurophysiology, 39(2), 370–383.CrossRef
Zurück zum Zitat Fyffe, R. (1991). Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. Journal of Neurophysiology, 65(5), 1134–1149.CrossRef Fyffe, R. (1991). Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. Journal of Neurophysiology, 65(5), 1134–1149.CrossRef
Zurück zum Zitat Gabbott, P., & Stewart, M. (1987). Distribution of neurons and glia in the visual cortex (area 17) of the adult albino rat: A quantitative description. Neuroscience, 21(3), 833–845.CrossRef Gabbott, P., & Stewart, M. (1987). Distribution of neurons and glia in the visual cortex (area 17) of the adult albino rat: A quantitative description. Neuroscience, 21(3), 833–845.CrossRef
Zurück zum Zitat Goulding, M. (2009). Circuits controlling vertebrate locomotion: Moving in a new direction. Nature Reviews Neuroscience, 10(7), 507–518.MathSciNetCrossRef Goulding, M. (2009). Circuits controlling vertebrate locomotion: Moving in a new direction. Nature Reviews Neuroscience, 10(7), 507–518.MathSciNetCrossRef
Zurück zum Zitat Grillner, S., & Jessell, T. M. (2009). Measured motion: Searching for simplicity in spinal locomotor networks. Current Opinion in Neurobiology, 19(6), 572–586.CrossRef Grillner, S., & Jessell, T. M. (2009). Measured motion: Searching for simplicity in spinal locomotor networks. Current Opinion in Neurobiology, 19(6), 572–586.CrossRef
Zurück zum Zitat Hanson, M. G., & Landmesser, L. T. (2003). Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. Journal of Neuroscience, 23(2), 587–600.CrossRef Hanson, M. G., & Landmesser, L. T. (2003). Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. Journal of Neuroscience, 23(2), 587–600.CrossRef
Zurück zum Zitat Hippenmeyer, S., Vrieseling, E., Sigrist, M., Portmann, T., Laengle, C., Ladle, D. R., & Arber, S. (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biology, 3(5), e159.CrossRef Hippenmeyer, S., Vrieseling, E., Sigrist, M., Portmann, T., Laengle, C., Ladle, D. R., & Arber, S. (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biology, 3(5), e159.CrossRef
Zurück zum Zitat Hultborn, H., Lindström, S., & Wigström, H. (1979). On the function of recurrent inhibition in the spinal cord. Experimental Brain Research, 37, 399–403.CrossRef Hultborn, H., Lindström, S., & Wigström, H. (1979). On the function of recurrent inhibition in the spinal cord. Experimental Brain Research, 37, 399–403.CrossRef
Zurück zum Zitat Hultborn, H., & Pierrot-Deseilligny, E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. The Journal of Physiology, 297(1), 267–287.CrossRef Hultborn, H., & Pierrot-Deseilligny, E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. The Journal of Physiology, 297(1), 267–287.CrossRef
Zurück zum Zitat Ladle, D. R., Pecho-Vrieseling, E., & Arber, S. (2007). Assembly of motor circuits in the spinal cord: Driven to function by genetic and experience-dependent mechanisms. Neuron, 56(2), 270–283.CrossRef Ladle, D. R., Pecho-Vrieseling, E., & Arber, S. (2007). Assembly of motor circuits in the spinal cord: Driven to function by genetic and experience-dependent mechanisms. Neuron, 56(2), 270–283.CrossRef
Zurück zum Zitat Maltenfort, M. G., Heckman, C., & Rymer, W. Z. (1998). Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: A simulation study. Journal of Neurophysiology, 80(1), 309–323.CrossRef Maltenfort, M. G., Heckman, C., & Rymer, W. Z. (1998). Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: A simulation study. Journal of Neurophysiology, 80(1), 309–323.CrossRef
Zurück zum Zitat Mattei, B., Schmied, A., Mazzocchio, R., Decchi, B., Rossi, A., & Vedel, J.-P. (2003). Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns. The Journal of Physiology, 548(2), 615–629.CrossRef Mattei, B., Schmied, A., Mazzocchio, R., Decchi, B., Rossi, A., & Vedel, J.-P. (2003). Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns. The Journal of Physiology, 548(2), 615–629.CrossRef
Zurück zum Zitat Matthews, P. (1997). Spindle and motoneuronal contributions to the phase advance of the human stretch reflex and the reduction of tremor. The Journal of Physiology, 498(1), 249–275.CrossRef Matthews, P. (1997). Spindle and motoneuronal contributions to the phase advance of the human stretch reflex and the reduction of tremor. The Journal of Physiology, 498(1), 249–275.CrossRef
Zurück zum Zitat McGregor, R. J. (1987). Neural and brain modelling. Academic. McGregor, R. J. (1987). Neural and brain modelling. Academic.
Zurück zum Zitat Myers, C. P., Lewcock, J. W., Hanson, M. G., Gosgnach, S., Aimone, J. B., Gage, F. H., Lee, K.-F., Landmesser, L. T., & Pfaff, S. L. (2005). Cholinergic input is required during embryonic development to mediate proper assembly of spinal locomotor circuits. Neuron, 46(1), 37–49.CrossRef Myers, C. P., Lewcock, J. W., Hanson, M. G., Gosgnach, S., Aimone, J. B., Gage, F. H., Lee, K.-F., Landmesser, L. T., & Pfaff, S. L. (2005). Cholinergic input is required during embryonic development to mediate proper assembly of spinal locomotor circuits. Neuron, 46(1), 37–49.CrossRef
Zurück zum Zitat Olbrich, H.-G., & Braak, H. (1985). Ratio of pyramidal cells versus non-pyramidal cells in sector ca1 of the human Ammon’s horn. Anatomy and Embryology, 173(1), 105–110.CrossRef Olbrich, H.-G., & Braak, H. (1985). Ratio of pyramidal cells versus non-pyramidal cells in sector ca1 of the human Ammon’s horn. Anatomy and Embryology, 173(1), 105–110.CrossRef
Zurück zum Zitat Renshaw, B. (1946). Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology, 9(3), 191–204.CrossRef Renshaw, B. (1946). Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology, 9(3), 191–204.CrossRef
Zurück zum Zitat Sapir, T., Geiman, E. J., Wang, Z., Velasquez, T., Mitsui, S., Yoshihara, Y., Frank, E., Alvarez, F. J., & Goulding, M. (2004). Pax6 and engrailed 1 regulate two distinct aspects of Renshaw cell development. Journal of Neuroscience, 24(5), 1255–1264.CrossRef Sapir, T., Geiman, E. J., Wang, Z., Velasquez, T., Mitsui, S., Yoshihara, Y., Frank, E., Alvarez, F. J., & Goulding, M. (2004). Pax6 and engrailed 1 regulate two distinct aspects of Renshaw cell development. Journal of Neuroscience, 24(5), 1255–1264.CrossRef
Zurück zum Zitat Scain, A.-L., Le Corronc, H., Allain, A.-E., Muller, E., Rigo, J.-M., Meyrand, P., Branchereau, P., & Legendre, P. (2010). Glycine release from radial cells modulates the spontaneous activity and its propagation during early spinal cord development. Journal of Neuroscience, 30(1), 390–403.CrossRef Scain, A.-L., Le Corronc, H., Allain, A.-E., Muller, E., Rigo, J.-M., Meyrand, P., Branchereau, P., & Legendre, P. (2010). Glycine release from radial cells modulates the spontaneous activity and its propagation during early spinal cord development. Journal of Neuroscience, 30(1), 390–403.CrossRef
Zurück zum Zitat Siembab, V. C., Smith, C. A., Zagoraiou, L., Berrocal, M. C., Mentis, G. Z., and Alvarez, F. J. (2010). Target selection of proprioceptive and motor axon synapses on neonatal v1-derived ia inhibitory interneurons and Renshaw cells. Journal of Comparative Neurology, 518(23), 4675–4701.CrossRef Siembab, V. C., Smith, C. A., Zagoraiou, L., Berrocal, M. C., Mentis, G. Z., and Alvarez, F. J. (2010). Target selection of proprioceptive and motor axon synapses on neonatal v1-derived ia inhibitory interneurons and Renshaw cells. Journal of Comparative Neurology, 518(23), 4675–4701.CrossRef
Zurück zum Zitat Stein, R., & Oğuztöreli, M. (1984). Modification of muscle responses by spinal circuitry. Neuroscience, 11(1), 231–240.CrossRef Stein, R., & Oğuztöreli, M. (1984). Modification of muscle responses by spinal circuitry. Neuroscience, 11(1), 231–240.CrossRef
Zurück zum Zitat Thomas, R., & Wilson, V. (1965). Precise localization of Renshaw cells with a new marking technique. Nature, 206(4980), 211–213.CrossRef Thomas, R., & Wilson, V. (1965). Precise localization of Renshaw cells with a new marking technique. Nature, 206(4980), 211–213.CrossRef
Zurück zum Zitat Uchiyama, T., & Windhorst, U. (2007). Effects of spinal recurrent inhibition on motoneuron short-term synchronization. Biological Cybernetics, 96(6), 561–575.CrossRef Uchiyama, T., & Windhorst, U. (2007). Effects of spinal recurrent inhibition on motoneuron short-term synchronization. Biological Cybernetics, 96(6), 561–575.CrossRef
Zurück zum Zitat Van Keulen, L. (1981). Autogenetic recurrent inhibition of individual spinal motoneurones of the cat. Neuroscience Letters, 21(3), 297–300.CrossRef Van Keulen, L. (1981). Autogenetic recurrent inhibition of individual spinal motoneurones of the cat. Neuroscience Letters, 21(3), 297–300.CrossRef
Zurück zum Zitat Vaughn, J. E., Henrikson, C. K., Chernow, C. R., Grieshaber, J. A., & Wimer, C. C. (1975). Genetically-associated variations in the development of reflex movements and synaptic junctions within an early reflex pathway of mouse spinal cord. Journal of Comparative Neurology, 161(4), 541–553.CrossRef Vaughn, J. E., Henrikson, C. K., Chernow, C. R., Grieshaber, J. A., & Wimer, C. C. (1975). Genetically-associated variations in the development of reflex movements and synaptic junctions within an early reflex pathway of mouse spinal cord. Journal of Comparative Neurology, 161(4), 541–553.CrossRef
Zurück zum Zitat Walmsley, B., & Tracey, D. J. (1981). An intracellular study of Renshaw cells. Brain research, 223(1), 170–175.CrossRef Walmsley, B., & Tracey, D. J. (1981). An intracellular study of Renshaw cells. Brain research, 223(1), 170–175.CrossRef
Zurück zum Zitat Wani, A. M., & Guha, S. K. (1975). A model for gradation of tension-recruitment and rate coding. Medical and Biological Engineering, 13, 870–875.CrossRef Wani, A. M., & Guha, S. K. (1975). A model for gradation of tension-recruitment and rate coding. Medical and Biological Engineering, 13, 870–875.CrossRef
Zurück zum Zitat Williams, E. R., & Baker, S. N. (2009). Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. Journal of Neuroscience, 29(20), 6616–6624.CrossRef Williams, E. R., & Baker, S. N. (2009). Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. Journal of Neuroscience, 29(20), 6616–6624.CrossRef
Zurück zum Zitat Wilson, V. J., & Talbot, W. H. (1963). Integration at an inhibitory interneurone: Inhibition of Renshaw cells. Nature, 200(4913), 1325–1327.CrossRef Wilson, V. J., & Talbot, W. H. (1963). Integration at an inhibitory interneurone: Inhibition of Renshaw cells. Nature, 200(4913), 1325–1327.CrossRef
Zurück zum Zitat Windhorst, U. (1996). On the role of recurrent inhibitory feedback in motor control. Progress in Neurobiology, 49(6), 517–587.CrossRef Windhorst, U. (1996). On the role of recurrent inhibitory feedback in motor control. Progress in Neurobiology, 49(6), 517–587.CrossRef
Metadaten
Titel
Simulation Model for Investigation on Recurrent Feedback Inhibition By Renshaw Cells
verfasst von
Sarah Ansari
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-52977-1_4

Neuer Inhalt