Skip to main content

2024 | OriginalPaper | Buchkapitel

7. Protein Structure Prediction

verfasst von : Qingfeng Chen

Erschienen in: Association Analysis Techniques and Applications in Bioinformatics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Proteins are essential components of living organisms. They are composed of a linear sequence of amino acids. However, proteins only exhibit activity and perform their specific biological functions when they fold into a particular spatial structure. Correlation analysis techniques can be used to study the interactions between proteins. However, in order to truly understand the function of a protein, it is necessary to have a clear understanding of its accurate spatial structure. The spatial structure of a protein allows us to comprehend how it carries out its corresponding function, which is crucial in the fields of medicine, pharmacology, and biology. Additionally, understanding the structures of known proteins can provide a reliable theoretical basis for designing new proteins. Therefore, this chapter primarily focuses on research related to protein structure prediction and introduces the topic of protein hotspot prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat BERMAN H, HENRICK K, NAKAMURA H. Announcing the worldwide protein data bank[J]. Nature Structural & Molecular Biology, 2003, 10(12):980–980.CrossRef BERMAN H, HENRICK K, NAKAMURA H. Announcing the worldwide protein data bank[J]. Nature Structural & Molecular Biology, 2003, 10(12):980–980.CrossRef
2.
Zurück zum Zitat ANDREEVA A, HOWORTH D, CHOTHIA C, et al. SCOP2 prototype:a new approach to protein structure mining[J]. Nucleic acids research, 2014, 42(D1):D310–D314.CrossRef ANDREEVA A, HOWORTH D, CHOTHIA C, et al. SCOP2 prototype:a new approach to protein structure mining[J]. Nucleic acids research, 2014, 42(D1):D310–D314.CrossRef
3.
Zurück zum Zitat ANDREEVA A, KULESHA E, GOUGH J, et al. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures[J]. Nucleic acids research, 2020, 48(D1):D376–D382.CrossRef ANDREEVA A, KULESHA E, GOUGH J, et al. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures[J]. Nucleic acids research, 2020, 48(D1):D376–D382.CrossRef
4.
Zurück zum Zitat ORENGO C A, MICHIE A D, JONES S, et al. CATH–a hierarchic classification of protein domain structures[J]. Structure, 1997, 5(8):1093–1109.CrossRef ORENGO C A, MICHIE A D, JONES S, et al. CATH–a hierarchic classification of protein domain structures[J]. Structure, 1997, 5(8):1093–1109.CrossRef
5.
Zurück zum Zitat ZHENG W, ZHANG C, WUYUN Q, et al. LOMETS2:improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins[J]. Nucleic acids research, 2019, 47(W1):W429–W436.CrossRef ZHENG W, ZHANG C, WUYUN Q, et al. LOMETS2:improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins[J]. Nucleic acids research, 2019, 47(W1):W429–W436.CrossRef
6.
Zurück zum Zitat WANG S, SUN S, LI Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS computational biology, 2017, 13(1):e1005324. WANG S, SUN S, LI Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS computational biology, 2017, 13(1):e1005324.
7.
Zurück zum Zitat LI Y, HU J, ZHANG C, et al. ResPRE:high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks[J]. Bioinformatics, 2019, 35(22):4647–4655. LI Y, HU J, ZHANG C, et al. ResPRE:high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks[J]. Bioinformatics, 2019, 35(22):4647–4655.
8.
Zurück zum Zitat LI Y, ZHANG C, BELL E W, et al. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks[J]. PLoS computational biology, 2021, 17(3):e1008865. LI Y, ZHANG C, BELL E W, et al. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks[J]. PLoS computational biology, 2021, 17(3):e1008865.
9.
Zurück zum Zitat LI Y, HU J, ZHANG C, et al. ResPRE:high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks[J]. Bioinformatics, 2019, 35(22):4647–4655. LI Y, HU J, ZHANG C, et al. ResPRE:high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks[J]. Bioinformatics, 2019, 35(22):4647–4655.
10.
Zurück zum Zitat LI Y, ZHANG C, BELL E W, et al. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks[J]. PLoS computational biology, 2021, 17(3):e1008865. LI Y, ZHANG C, BELL E W, et al. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks[J]. PLoS computational biology, 2021, 17(3):e1008865.
11.
Zurück zum Zitat YANG J, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences, 2020, 117(3):1496–1503.CrossRef YANG J, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences, 2020, 117(3):1496–1503.CrossRef
12.
Zurück zum Zitat LI Y, ZHENG W. Protein 3D structure prediction by Zhang human group in CASP14[J]. Abstract of 14th critical assessment of structure prediction, 2020, 328. LI Y, ZHENG W. Protein 3D structure prediction by Zhang human group in CASP14[J]. Abstract of 14th critical assessment of structure prediction, 2020, 328.
13.
Zurück zum Zitat JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583–589.CrossRef JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583–589.CrossRef
14.
Zurück zum Zitat JOHNSON L S, EDDY S R, PORTUGALY E. Hidden Markov model speed heuristic and iterative HMM search procedure[J]. BMC Bioinformatics, 2010, 11(1):1–8.CrossRef JOHNSON L S, EDDY S R, PORTUGALY E. Hidden Markov model speed heuristic and iterative HMM search procedure[J]. BMC Bioinformatics, 2010, 11(1):1–8.CrossRef
15.
Zurück zum Zitat REMMERT M, BIEGERT A, HAUSER A, et al. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment[J]. Nature Methods, 2012, 9(2):173–175.CrossRef REMMERT M, BIEGERT A, HAUSER A, et al. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment[J]. Nature Methods, 2012, 9(2):173–175.CrossRef
16.
Zurück zum Zitat MITCHELL A L, ALMEIDA A, BERACOCHEA M, et al. MGnify: the microbiome analysis resource in 2020[J]. Nucleic Acids Research, 2020, 48(D1):D570–D578. MITCHELL A L, ALMEIDA A, BERACOCHEA M, et al. MGnify: the microbiome analysis resource in 2020[J]. Nucleic Acids Research, 2020, 48(D1):D570–D578.
17.
Zurück zum Zitat SUZEK B E, WANG Y, HUANG H, et al. UniRef clusters:a comprehensive and scalable alternative for improving sequence similarity searches[J]. Bioinformatics, 2015, 31(6):926–932.CrossRef SUZEK B E, WANG Y, HUANG H, et al. UniRef clusters:a comprehensive and scalable alternative for improving sequence similarity searches[J]. Bioinformatics, 2015, 31(6):926–932.CrossRef
18.
Zurück zum Zitat MILOT M, VON DEN DRIESCH LARS, CLOVIS G, et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments[J]. Nucleic Acids Research, 2017, 45(D1):D170–D176. MILOT M, VON DEN DRIESCH LARS, CLOVIS G, et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments[J]. Nucleic Acids Research, 2017, 45(D1):D170–D176.
19.
Zurück zum Zitat BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557):871–876CrossRef BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557):871–876CrossRef
20.
Zurück zum Zitat MOREIRA I S, FERNANDES P A, RAMOS M J. Hot spots–A review of the protein–protein interface determinant amino-acid residues[J]. Proteins: Structure, Function, and Bioinformatics, 2007, 68(4):803–812.CrossRef MOREIRA I S, FERNANDES P A, RAMOS M J. Hot spots–A review of the protein–protein interface determinant amino-acid residues[J]. Proteins: Structure, Function, and Bioinformatics, 2007, 68(4):803–812.CrossRef
21.
Zurück zum Zitat THORN K S, BOGAN A A. ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions[J]. Bioinformatics, 2001, 17(3):284–285.CrossRef THORN K S, BOGAN A A. ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions[J]. Bioinformatics, 2001, 17(3):284–285.CrossRef
22.
Zurück zum Zitat FISCHER T B, ARUNACHALAM K V, BAILEY D, et al. The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces[J]. Bioinformatics, 2003, 19(11):1453–1454.CrossRef FISCHER T B, ARUNACHALAM K V, BAILEY D, et al. The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces[J]. Bioinformatics, 2003, 19(11):1453–1454.CrossRef
23.
Zurück zum Zitat KUMAR M D S, GROMIHA M M. PINT: protein–protein interactions thermodynamic database[J]. Nucleic acids research, 2006, 34(suppl_1):D195–D198. KUMAR M D S, GROMIHA M M. PINT: protein–protein interactions thermodynamic database[J]. Nucleic acids research, 2006, 34(suppl_1):D195–D198.
24.
Zurück zum Zitat MOAL I H, FERNÁNDEZ-RECIO J. SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models[J]. Bioinformatics, 2012, 28(20):2600–2607.CrossRef MOAL I H, FERNÁNDEZ-RECIO J. SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models[J]. Bioinformatics, 2012, 28(20):2600–2607.CrossRef
25.
Zurück zum Zitat CLACKSON T, WELLS J A. A hot spot of binding energy in a hormone-receptor interface[J]. Science, 1995, 267(5196):383–386.CrossRef CLACKSON T, WELLS J A. A hot spot of binding energy in a hormone-receptor interface[J]. Science, 1995, 267(5196):383–386.CrossRef
26.
Zurück zum Zitat LI J, LIU Q. ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces[J]. Bioinformatics, 2009, 25(6):743–750. LI J, LIU Q. ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces[J]. Bioinformatics, 2009, 25(6):743–750.
27.
Zurück zum Zitat DENG L, GUAN J, WEI X, et al. Boosting prediction performance of protein–protein interaction hot spots by using structural neighborhood properties[J]. Journal of Computational Biology, 2013, 20(11):878–891.MathSciNetCrossRef DENG L, GUAN J, WEI X, et al. Boosting prediction performance of protein–protein interaction hot spots by using structural neighborhood properties[J]. Journal of Computational Biology, 2013, 20(11):878–891.MathSciNetCrossRef
28.
Zurück zum Zitat KAWASHIMA S, KANEHISA M. AAindex: amino acid index database[J]. Nucleic Acids Research, 2000, 28(1):374–374.CrossRef KAWASHIMA S, KANEHISA M. AAindex: amino acid index database[J]. Nucleic Acids Research, 2000, 28(1):374–374.CrossRef
29.
Zurück zum Zitat ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic acids research, 1997, 25(17):3389–3402.CrossRef ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic acids research, 1997, 25(17):3389–3402.CrossRef
30.
Zurück zum Zitat ASHKENAZY H, EREZ E, MARTZ E, et al. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids[J]. Nucleic acids research, 2010, 38(suppl_2):W529–W533. ASHKENAZY H, EREZ E, MARTZ E, et al. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids[J]. Nucleic acids research, 2010, 38(suppl_2):W529–W533.
31.
Zurück zum Zitat HIGA R H, TOZZI C L. Prediction of binding hot spot residues by using structural and evolutionary parameters[J]. Genetics and Molecular biology, 2009, 32:626–633.CrossRef HIGA R H, TOZZI C L. Prediction of binding hot spot residues by using structural and evolutionary parameters[J]. Genetics and Molecular biology, 2009, 32:626–633.CrossRef
32.
Zurück zum Zitat SHINGATE P, MANOHARAN M, SUKHWAL A, et al. ECMIS: computational approach for the identification of hotspots at protein-protein interfaces[J]. BMC bioinformatics, 2014, 15(1):1–10.CrossRef SHINGATE P, MANOHARAN M, SUKHWAL A, et al. ECMIS: computational approach for the identification of hotspots at protein-protein interfaces[J]. BMC bioinformatics, 2014, 15(1):1–10.CrossRef
33.
Zurück zum Zitat JOOSTEN R P, TE BEEK T A H, KRIEGER E, et al. A series of PDB related databases for everyday needs[J]. Nucleic acids research, 2010, 39(suppl_1):D411–D419. JOOSTEN R P, TE BEEK T A H, KRIEGER E, et al. A series of PDB related databases for everyday needs[J]. Nucleic acids research, 2010, 39(suppl_1):D411–D419.
34.
Zurück zum Zitat LEE B, RICHARDS F M. The interpretation of protein structures:estimation of static accessibility[J]. Journal of molecular biology, 1971, 55(3):379–IN4.CrossRef LEE B, RICHARDS F M. The interpretation of protein structures:estimation of static accessibility[J]. Journal of molecular biology, 1971, 55(3):379–IN4.CrossRef
35.
Zurück zum Zitat KORTEMME T, KIM D E, BAKER D. Computational alanine scanning of protein-protein interfaces[J]. Science’s STKE, 2004, 2004(219):pl2–pl2. KORTEMME T, KIM D E, BAKER D. Computational alanine scanning of protein-protein interfaces[J]. Science’s STKE, 2004, 2004(219):pl2–pl2.
36.
Zurück zum Zitat TUNCBAG N, KESKIN O, GURSOY A. HotPoint: hot spot prediction server for protein interfaces[J]. Nucleic acids research, 2010, 38(suppl_2):W402–W406. TUNCBAG N, KESKIN O, GURSOY A. HotPoint: hot spot prediction server for protein interfaces[J]. Nucleic acids research, 2010, 38(suppl_2):W402–W406.
37.
Zurück zum Zitat LISE S, ARCHAMBEAU C, PONTIL M, et al. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods[J]. BMC bioinformatics, 2009, 10(1):1–17.CrossRef LISE S, ARCHAMBEAU C, PONTIL M, et al. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods[J]. BMC bioinformatics, 2009, 10(1):1–17.CrossRef
38.
Zurück zum Zitat LIANG S, MEROUEH S O, WANG G, et al. Consensus scoring for enriching near-native structures from protein–protein docking decoys[J]. Proteins: Structure, Function, and Bioinformatics, 2009, 75(2):397–403.CrossRef LIANG S, MEROUEH S O, WANG G, et al. Consensus scoring for enriching near-native structures from protein–protein docking decoys[J]. Proteins: Structure, Function, and Bioinformatics, 2009, 75(2):397–403.CrossRef
39.
Zurück zum Zitat DARNELL S J, PAGE D, MITCHELL J C. An automated decision-tree approach to predicting protein interaction hot spots[J]. Proteins: Structure, Function, and Bioinformatics, 2007, 68(4):813–823.CrossRef DARNELL S J, PAGE D, MITCHELL J C. An automated decision-tree approach to predicting protein interaction hot spots[J]. Proteins: Structure, Function, and Bioinformatics, 2007, 68(4):813–823.CrossRef
40.
Zurück zum Zitat ASSI S A, TANAKA T, RABBITTS T H, et al. PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces[J]. Nucleic acids research, 2010, 38(6):e86–e86.CrossRef ASSI S A, TANAKA T, RABBITTS T H, et al. PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces[J]. Nucleic acids research, 2010, 38(6):e86–e86.CrossRef
Metadaten
Titel
Protein Structure Prediction
verfasst von
Qingfeng Chen
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8251-6_7

Premium Partner