Skip to main content

2024 | OriginalPaper | Buchkapitel

6. The Associations Between Non-coding RNA and Disease

verfasst von : Qingfeng Chen

Erschienen in: Association Analysis Techniques and Applications in Bioinformatics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Association analysis is used to discover intriguing associations hidden in datasets. In this chapter, we present the application of association analysis in bioinformatics to discover potential non-coding RNA-disease associations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat LEI X, MUDIYANSELAGE T B, ZHANG Y, et al. A comprehensive survey on computational methods of non-coding RNA and disease association prediction[J]. Briefings in Bioinformatics, 2020, 22(4): bbaa350-1-bbaa350-31. LEI X, MUDIYANSELAGE T B, ZHANG Y, et al. A comprehensive survey on computational methods of non-coding RNA and disease association prediction[J]. Briefings in Bioinformatics, 2020, 22(4): bbaa350-1-bbaa350-31.
2.
Zurück zum Zitat LUO J, DING P, LIANG C, et al. Collective prediction of disease-associated miRNAs based on transduction learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2016, 14(6): 1468–1475. LUO J, DING P, LIANG C, et al. Collective prediction of disease-associated miRNAs based on transduction learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2016, 14(6): 1468–1475.
3.
Zurück zum Zitat HU Y, ZHAO T, ZHANG N, et al. Identifying diseases-related metabolites using random walk[J]. BMC bioinformatics, 2018, 19(5): 37–46. HU Y, ZHAO T, ZHANG N, et al. Identifying diseases-related metabolites using random walk[J]. BMC bioinformatics, 2018, 19(5): 37–46.
4.
Zurück zum Zitat LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788–791. LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788–791.
5.
Zurück zum Zitat BILLSUS D, PAZZANI M J. Learning collaborative information filters[C]// International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. 1998, 98: 46–54. BILLSUS D, PAZZANI M J. Learning collaborative information filters[C]// International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. 1998, 98: 46–54.
6.
Zurück zum Zitat BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5–32. BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5–32.
7.
Zurück zum Zitat FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119–139.MathSciNet FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119–139.MathSciNet
8.
Zurück zum Zitat CHENG J, LI G, CHEN X. Research on travel time prediction model of freeway based on gradient boosting decision tree[J]. IEEE Access, 2018, 7: 7466–7480. CHENG J, LI G, CHEN X. Research on travel time prediction model of freeway based on gradient boosting decision tree[J]. IEEE Access, 2018, 7: 7466–7480.
9.
Zurück zum Zitat LECUN Y, FOGELMAN-SOULIÉ F. Modèles connexionnistes de l’apprentissage[J]. Intellectica Revue de l Association pour la Recherche Cognitive, 1987, 2(1): 114–143. LECUN Y, FOGELMAN-SOULIÉ F. Modèles connexionnistes de l’apprentissage[J]. Intellectica Revue de l Association pour la Recherche Cognitive, 1987, 2(1): 114–143.
10.
Zurück zum Zitat LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541–551. LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541–551.
12.
Zurück zum Zitat BAO Z, YANG Z, HUANG Z, et al. LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases[J]. Nucleic acids research, 2019, 47(D1): D1034-D1037. BAO Z, YANG Z, HUANG Z, et al. LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases[J]. Nucleic acids research, 2019, 47(D1): D1034-D1037.
13.
Zurück zum Zitat NING S, ZHANG J, WANG P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers[J]. Nucleic acids research, 2016, 44(D1): D980-D985. NING S, ZHANG J, WANG P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers[J]. Nucleic acids research, 2016, 44(D1): D980-D985.
14.
Zurück zum Zitat NING L, CUI T, ZHENG B, et al. MNDR v3. 0: mammal ncRNA–disease repository with increased coverage and annotation[J]. Nucleic Acids Research, 2021, 49(D1): D160-D164. NING L, CUI T, ZHENG B, et al. MNDR v3. 0: mammal ncRNA–disease repository with increased coverage and annotation[J]. Nucleic Acids Research, 2021, 49(D1): D160-D164.
15.
Zurück zum Zitat LI J, HAN L, ROEBUCK P, et al. TANRIC: An Interactive Open Platform to Explore the Function of lncRNAs in Cancer[J]. Cancer research, 2015, 75(18): 3728–3737. LI J, HAN L, ROEBUCK P, et al. TANRIC: An Interactive Open Platform to Explore the Function of lncRNAs in Cancer[J]. Cancer research, 2015, 75(18): 3728–3737.
16.
Zurück zum Zitat XIE B, DING Q, HAN H, et al. miRCancer: a microRNA–cancer association database constructed by text mining on literature[J]. Bioinformatics, 2013, 29(5):638–644. XIE B, DING Q, HAN H, et al. miRCancer: a microRNA–cancer association database constructed by text mining on literature[J]. Bioinformatics, 2013, 29(5):638–644.
17.
Zurück zum Zitat JIANG Q, WANG Y, HAO Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease[J]. Nucleic acids research, 2009, 37(suppl_1): D98-D104. JIANG Q, WANG Y, HAO Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease[J]. Nucleic acids research, 2009, 37(suppl_1): D98-D104.
18.
Zurück zum Zitat HUANG Z, SHI J, GAO Y, et al. HMDD v3. 0: a database for experimentally supported human microRNA–disease associations[J]. Nucleic acids research, 2019, 47(D1): D1013-D1017. HUANG Z, SHI J, GAO Y, et al. HMDD v3. 0: a database for experimentally supported human microRNA–disease associations[J]. Nucleic acids research, 2019, 47(D1): D1013-D1017.
19.
Zurück zum Zitat ULFENBORG B, JURCEVIC S, LINDLÖF A, et al. miREC: a database of miRNAs involved in the development of endometrial cancer[J]. BMC research notes, 2015, 8(1): 1–9. ULFENBORG B, JURCEVIC S, LINDLÖF A, et al. miREC: a database of miRNAs involved in the development of endometrial cancer[J]. BMC research notes, 2015, 8(1): 1–9.
20.
Zurück zum Zitat LAN W, ZHU M, CHEN Q, et al. CircR2Cancer: a manually curated database of associations between circRNAs and cancers[J]. Database, 2020. LAN W, ZHU M, CHEN Q, et al. CircR2Cancer: a manually curated database of associations between circRNAs and cancers[J]. Database, 2020.
21.
Zurück zum Zitat MERCY R, DISHA S, MUKTA P, et al. Circad: a comprehensive manually curated resource of circular RNA associated with diseases[J]. Database, 2020. MERCY R, DISHA S, MUKTA P, et al. Circad: a comprehensive manually curated resource of circular RNA associated with diseases[J]. Database, 2020.
22.
Zurück zum Zitat ZHAO Z, WANG K, WU F, et al. circRNA disease: a manually curated database of experimentally supported circRNA-disease associations[J]. Cell Death & Disease, 2018, 9(5): 475. ZHAO Z, WANG K, WU F, et al. circRNA disease: a manually curated database of experimentally supported circRNA-disease associations[J]. Cell Death & Disease, 2018, 9(5): 475.
23.
Zurück zum Zitat SUN J, SHI H, WANG Z, et al. Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network[J]. Molecular BioSystems, 2014, 10(8): 2074–2081. SUN J, SHI H, WANG Z, et al. Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network[J]. Molecular BioSystems, 2014, 10(8): 2074–2081.
24.
Zurück zum Zitat ZHOU M, WANG X, LI J, et al. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network[J]. Molecular BioSystems, 2015, 11(3): 760–769. ZHOU M, WANG X, LI J, et al. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network[J]. Molecular BioSystems, 2015, 11(3): 760–769.
25.
Zurück zum Zitat CHEN X. KATZLDA: KATZ measure for the lncRNA-disease association prediction[J]. Scientific Reports, 2015, 5(1): 1–11. CHEN X. KATZLDA: KATZ measure for the lncRNA-disease association prediction[J]. Scientific Reports, 2015, 5(1): 1–11.
26.
Zurück zum Zitat CHEN Q, LAI D, LAN W, et al. ILDMSF: inferring associations between long non-coding RNA and disease based on multi-similarity fusion[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2019, 18(3): 1106–1112. CHEN Q, LAI D, LAN W, et al. ILDMSF: inferring associations between long non-coding RNA and disease based on multi-similarity fusion[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2019, 18(3): 1106–1112.
27.
Zurück zum Zitat LU C, YANG M, LUO F, et al. Prediction of lncRNA–disease associations based on inductive matrix completion[J]. Bioinformatics, 2018, 34(19): 3357–3364. LU C, YANG M, LUO F, et al. Prediction of lncRNA–disease associations based on inductive matrix completion[J]. Bioinformatics, 2018, 34(19): 3357–3364.
28.
Zurück zum Zitat LU C, YANG M, LI M, et al. Predicting human lncRNA-disease associations based on geometric matrix completion[J]. IEEE journal of biomedical and health informatics, 2019, 24(8): 2420–2429. LU C, YANG M, LI M, et al. Predicting human lncRNA-disease associations based on geometric matrix completion[J]. IEEE journal of biomedical and health informatics, 2019, 24(8): 2420–2429.
29.
Zurück zum Zitat CHEN X, YAN G Y. Novel human lncRNA–disease association inference based on lncRNA expression profiles[J]. Bioinformatics, 2013, 29(20): 2617–2624. CHEN X, YAN G Y. Novel human lncRNA–disease association inference based on lncRNA expression profiles[J]. Bioinformatics, 2013, 29(20): 2617–2624.
30.
Zurück zum Zitat CHEN X, YAN C C, LUO C, et al. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity[J]. Scientific Reports, 2015, 5(1): 1–12. CHEN X, YAN C C, LUO C, et al. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity[J]. Scientific Reports, 2015, 5(1): 1–12.
31.
Zurück zum Zitat HUANG Y A, CHEN X, YOU Z H, et al. ILNCSIM: improved lncRNA functional similarity calculation model[J]. Oncotarget, 2016, 7(18): 25902. HUANG Y A, CHEN X, YOU Z H, et al. ILNCSIM: improved lncRNA functional similarity calculation model[J]. Oncotarget, 2016, 7(18): 25902.
32.
Zurück zum Zitat LAN W, WU X, CHEN Q, et al. GANLDA: graph attention network for lncRNA-disease associations prediction[J]. Neurocomputing, 2022, 469: 384–393. LAN W, WU X, CHEN Q, et al. GANLDA: graph attention network for lncRNA-disease associations prediction[J]. Neurocomputing, 2022, 469: 384–393.
33.
Zurück zum Zitat LAN W, LAI D, CHEN Q, et al. LDICDL: LncRNA-disease association identification based on collaborative deep learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2020. LAN W, LAI D, CHEN Q, et al. LDICDL: LncRNA-disease association identification based on collaborative deep learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2020.
34.
Zurück zum Zitat XUAN P, PAN S, ZHANG T, et al. Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations[J]. Cells, 2019, 8(9): 1012. XUAN P, PAN S, ZHANG T, et al. Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations[J]. Cells, 2019, 8(9): 1012.
35.
Zurück zum Zitat CHEN X, LIU M X, YAN G Y. RWRMDA: predicting novel human microRNA–disease associations[J]. Molecular BioSystems, 2012, 8(10): 2792–2798. CHEN X, LIU M X, YAN G Y. RWRMDA: predicting novel human microRNA–disease associations[J]. Molecular BioSystems, 2012, 8(10): 2792–2798.
36.
Zurück zum Zitat XUAN P, HAN K, GUO Y, et al. Prediction of potential disease-associated microRNAs based on random walk[J]. Bioinformatics, 2015, 31(11): 1805–1815. XUAN P, HAN K, GUO Y, et al. Prediction of potential disease-associated microRNAs based on random walk[J]. Bioinformatics, 2015, 31(11): 1805–1815.
37.
Zurück zum Zitat SUN D, LI A, FENG H, et al. NTSMDA: prediction of miRNA–disease associations by integrating network topological similarity[J]. Molecular biosystems, 2016, 12(7): 2224–2232. SUN D, LI A, FENG H, et al. NTSMDA: prediction of miRNA–disease associations by integrating network topological similarity[J]. Molecular biosystems, 2016, 12(7): 2224–2232.
38.
Zurück zum Zitat CHEN X, YAN G Y. Semi-supervised learning for potential human microRNA-disease associations inference[J]. Scientific reports, 2014, 4(1): 1–10.MathSciNet CHEN X, YAN G Y. Semi-supervised learning for potential human microRNA-disease associations inference[J]. Scientific reports, 2014, 4(1): 1–10.MathSciNet
39.
Zurück zum Zitat PASQUIER C, GARDÈS J. Prediction of miRNA-disease associations with a vector space model[J]. Scientific Reports, 2016, 6(1): 1–10. PASQUIER C, GARDÈS J. Prediction of miRNA-disease associations with a vector space model[J]. Scientific Reports, 2016, 6(1): 1–10.
40.
Zurück zum Zitat PENG L, PENG M, LIAO B, et al. Improved low-rank matrix recovery method for predicting miRNA-disease association[J]. Scientific reports, 2017, 7(1): 1–10. PENG L, PENG M, LIAO B, et al. Improved low-rank matrix recovery method for predicting miRNA-disease association[J]. Scientific reports, 2017, 7(1): 1–10.
41.
Zurück zum Zitat LI J Q, RONG Z H, CHEN X, et al. MCMDA: matrix completion for MiRNA-disease association prediction[J]. Oncotarget, 2017, 8(13): 21187. LI J Q, RONG Z H, CHEN X, et al. MCMDA: matrix completion for MiRNA-disease association prediction[J]. Oncotarget, 2017, 8(13): 21187.
42.
Zurück zum Zitat CHEN X, WU Q F, YAN G Y. RKNNMDA: ranking-based KNN for MiRNA-disease association prediction[J]. RNA biology, 2017, 14(7): 952–962. CHEN X, WU Q F, YAN G Y. RKNNMDA: ranking-based KNN for MiRNA-disease association prediction[J]. RNA biology, 2017, 14(7): 952–962.
43.
Zurück zum Zitat LUO J, XIAO Q, LIANG C, et al. Predicting MicroRNA-disease associations using Kronecker regularized least squares based on heterogeneous omics data[J]. Ieee Access, 2017, 5(2): 503–2513. LUO J, XIAO Q, LIANG C, et al. Predicting MicroRNA-disease associations using Kronecker regularized least squares based on heterogeneous omics data[J]. Ieee Access, 2017, 5(2): 503–2513.
44.
Zurück zum Zitat DING Y, TIAN L P, LEI X, et al. Variational graph auto-encoders for miRNA-disease association prediction[J]. Methods, 2021, 192: 25–34. DING Y, TIAN L P, LEI X, et al. Variational graph auto-encoders for miRNA-disease association prediction[J]. Methods, 2021, 192: 25–34.
45.
Zurück zum Zitat ZHANG L, CHEN X, YIN J. Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder[J]. Cells, 2019, 8(9): 1040. ZHANG L, CHEN X, YIN J. Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder[J]. Cells, 2019, 8(9): 1040.
46.
Zurück zum Zitat PENG J, HUI W, LI Q, et al. A learning-based framework for miRNA-disease association identification using neural networks[J]. Bioinformatics, 2019, 35(21): 4364–4371. PENG J, HUI W, LI Q, et al. A learning-based framework for miRNA-disease association identification using neural networks[J]. Bioinformatics, 2019, 35(21): 4364–4371.
47.
Zurück zum Zitat LEI X, ZHANG W. BRWSP: predicting circRNA-disease associations based on biased random walk to search paths on a multiple heterogeneous network[J]. Complexity, 2019. LEI X, ZHANG W. BRWSP: predicting circRNA-disease associations based on biased random walk to search paths on a multiple heterogeneous network[J]. Complexity, 2019.
48.
Zurück zum Zitat LEI X, BIAN C. Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association[J]. Scientific reports, 2020, 10(1): 1–9.MathSciNet LEI X, BIAN C. Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association[J]. Scientific reports, 2020, 10(1): 1–9.MathSciNet
49.
Zurück zum Zitat FAN C, LEI X, TAN Y. Inferring Candidate CircRNA-Disease Associations by Bi-random Walk Based on CircRNA Regulatory Similarity[C]//International Conference on Swarm Intelligence. Springer, Cham, 2020: 485–494. FAN C, LEI X, TAN Y. Inferring Candidate CircRNA-Disease Associations by Bi-random Walk Based on CircRNA Regulatory Similarity[C]//International Conference on Swarm Intelligence. Springer, Cham, 2020: 485–494.
50.
Zurück zum Zitat XIAO Q, LUO J, DAI J. Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework[J]. IEEE journal of biomedical and health informatics, 2019, 23(6): 2661–2669. XIAO Q, LUO J, DAI J. Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework[J]. IEEE journal of biomedical and health informatics, 2019, 23(6): 2661–2669.
51.
Zurück zum Zitat WEI H, LIU B. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization[J]. Briefings in bioinformatics, 2020, 21(4): 1356–1367. WEI H, LIU B. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization[J]. Briefings in bioinformatics, 2020, 21(4): 1356–1367.
52.
Zurück zum Zitat LU C, ZENG M, ZHANG F, et al. Deep matrix factorization improves prediction of human circRNA-disease associations[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(3): 891–899. LU C, ZENG M, ZHANG F, et al. Deep matrix factorization improves prediction of human circRNA-disease associations[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(3): 891–899.
53.
Zurück zum Zitat WANG L, YOU Z H, LI J Q, et al. IMS-CDA: prediction of CircRNA-disease associations from the integration of multisource similarity information with deep stacked autoencoder model[J]. IEEE Transactions on Cybernetics, 2020, 51(11): 5522–5531. WANG L, YOU Z H, LI J Q, et al. IMS-CDA: prediction of CircRNA-disease associations from the integration of multisource similarity information with deep stacked autoencoder model[J]. IEEE Transactions on Cybernetics, 2020, 51(11): 5522–5531.
54.
Zurück zum Zitat YANG J, LEI X. Predicting circRNA-disease associations based on autoencoder and graph embedding[J]. Information Sciences, 2021, 571: 323–336.MathSciNet YANG J, LEI X. Predicting circRNA-disease associations based on autoencoder and graph embedding[J]. Information Sciences, 2021, 571: 323–336.MathSciNet
55.
Zurück zum Zitat XIAO Q, FU Y, YANG Y, et al. NSL2CD: identifying potential circRNA–disease associations based on network embedding and subspace learning[J]. Briefings in Bioinformatics, 2021, 22(6): bbab177. XIAO Q, FU Y, YANG Y, et al. NSL2CD: identifying potential circRNA–disease associations based on network embedding and subspace learning[J]. Briefings in Bioinformatics, 2021, 22(6): bbab177.
56.
Zurück zum Zitat LAN W, DONG Y, CHEN Q, et al. IGNSCDA: predicting CircRNA-disease associations based on improved graph convolutional network and negative sampling[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 19(6): 3530–3538. LAN W, DONG Y, CHEN Q, et al. IGNSCDA: predicting CircRNA-disease associations based on improved graph convolutional network and negative sampling[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 19(6): 3530–3538.
57.
Zurück zum Zitat YAN C, WANG J, WU F X. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations[J]. BMC bioinformatics, 2018, 19(19): 73–81. BILLSUS D, PAZZANI M J. Learning collaborative information filters[C]// International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. 1998, 98: 46–54. YAN C, WANG J, WU F X. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations[J]. BMC bioinformatics, 2018, 19(19): 73–81. BILLSUS D, PAZZANI M J. Learning collaborative information filters[C]// International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. 1998, 98: 46–54.
58.
Zurück zum Zitat LAN W, ZHANG H, DONG Y, et al. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network[J]. Methods, 2022, 208: 35–41. LAN W, ZHANG H, DONG Y, et al. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network[J]. Methods, 2022, 208: 35–41.
Metadaten
Titel
The Associations Between Non-coding RNA and Disease
verfasst von
Qingfeng Chen
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8251-6_6

Premium Partner